
MATLAB Compiler
The Language of Technical Computing

User’s Guide

®

Version 4

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Compiler User’s Guide
© COPYRIGHT 1995 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: Sept 1995 First printing
March 1997 Second printing
Jan 1998 Third printing Revised for Version 1.2
Jan 1999 Fourth printing Revised for Version 2.0 (Release 11)
Sept 2000 Fifth printing Revised for Version 2.1 (Release 12)
Oct 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)

June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)

Contents
1
Getting Started

Introduction . 1-2
Before You Begin . 1-2

Upgrading from Previous Compiler Releases 1-4

Differences Between MATLAB Compiler 4 and
Previous Versions of the MATLAB Compiler 1-5

Wrapper Code Differences . 1-6
Deprecated Compiler Options . 1-7
Deprecated Wrapper Options . 1-9
New Compiler Options . 1-9

Uses of the MATLAB Compiler . 1-13
Wrapper Files . 1-13
Stand-Alone Applications . 1-14
Libraries . 1-14
Builder Products . 1-14

Quick Start . 1-16
Compiling a Stand-Alone Application 1-16
Compiling a Shared Library . 1-16
Testing Components on Development Machine 1-17
Deploying Components to Other Machines 1-18

Limitations and Restrictions . 1-20
Compiling MATLAB and Toolboxes . 1-20
MATLAB Code . 1-20
Stand-Alone Applications . 1-21
Fixing Callback Problems: Missing Functions 1-22
Finding Missing Functions in an M-File 1-23
Suppressing Warnings on Linux . 1-23
i

ii Contents
MATLAB Compiler Licensing . 1-25
Deployed Applications . 1-25
Using MATLAB Compiler Licenses for Development 1-25

2
Installation and Configuration

System Requirements . 2-2
Supported Third-Party Compilers . 2-2

Installation . 2-4
Installing the MATLAB Compiler . 2-4
Installing an ANSI C or C++ Compiler . 2-4

Configuration . 2-7
Introducing the mbuild Utility . 2-7
Configuring an ANSI C or C++ Compiler 2-7

Special Compiler Notes . 2-11
Known Windows Compiler Limitations 2-11

Options Files . 2-12
Locating the Options File . 2-12
Changing the Options File . 2-13

3
Compilation Process

Overview of the MATLAB Compiler Technology 3-2
MATLAB Component Runtime . 3-2
Component Technology File . 3-2
Build Process . 3-2

Input and Output Files . 3-6
Stand-Alone Executable . 3-6
C Shared Library . 3-7

Deployment Process . 3-8
Porting Generated Code to a Different Platform 3-8
Extracting a CTF Archive without Executing the Component . 3-9
User Interaction with the Compilation Path 3-9

Working with the MCR . 3-12
Installing the MCR on a Deployment Machine 3-12

4
Working with mcc

Command Overview . 4-2
Compiler Options . 4-2
Setting Up Default Options . 4-3

Using Macros to Simplify Compilation 4-4
Understanding a Macro Option . 4-4

Using Pathnames . 4-6

Using Bundle Files . 4-7

Using Wrapper Files . 4-10
Main File Wrapper . 4-10
C Library Wrapper . 4-11
C++ Library Wrapper . 4-12
COM Component Wrapper . 4-12

Interfacing M-Code to C/C++ Code . 4-13
C Example . 4-13

Using Pragmas . 4-16
Using feval . 4-16
iii

iv Contents
Script Files . 4-17
Converting Script M-Files to Function M-Files 4-17
Including Script Files in Deployed Applications 4-18

5
Stand-Alone Applications

Introduction . 5-2

C Stand-Alone Application Target . 5-3
Magic Square Example . 5-3

Coding with M-Files Only . 5-9
Example . 5-9

Mixing M-Files and C or C++ . 5-11
Simple Example . 5-11
Advanced C Example . 5-16

6
Libraries

Introduction . 6-2

C Shared Library Target . 6-3
C Shared Library Wrapper . 6-3
C Shared Library Example . 6-3
Calling a Shared Library . 6-9

C++ Shared Library Target . 6-14
C++ Shared Library Wrapper . 6-14
C++ Shared Library Example . 6-14

MATLAB Compiler-Generated Interface Functions 6-19
Structure of Programs that Call Shared Libraries 6-20
Library Initialization and Termination Functions 6-21
Print and Error Handling Functions . 6-22
Functions Generated from M-Files . 6-23

7
COM and Excel Components

Introduction . 7-2
Generating COM and Excel Components 7-2

COM Object Target . 7-3
COM Component Wrapper . 7-3

Excel Plug-In Target . 7-8
Excel Plug-in Wrapper . 7-8

8
Reference

Functions — Categorical List . 8-2
Pragmas . 8-2
Command Line Tools . 8-2

A
MATLAB Compiler Quick Reference

Common Uses of the Compiler . A-2
Create a Stand-Alone Application . A-2
Create a Library . A-2
v

vi Contents
mcc . A-4

B
Error and Warning Messages

Compile-Time Errors . B-2

Warning Messages . B-5

Run-Time Errors . B-7

Depfun Errors . B-8
MCR/Dispatcher Errors . B-8
XML Parser Errors . B-8
Depfun-Produced Errors . B-8

C
Troubleshooting

mbuild . C-2

MATLAB Compiler . C-4

D
C++ Utility Library Reference

Primitive Types . D-2

Utility Classes . D-3

mwString Class . D-4

Constructors . D-4
Methods . D-4
Operators . D-4

mwException Class . D-19
Constructors . D-19
Methods . D-19
Operators . D-19

mwArray Class . D-27
Constructors . D-27
Methods . D-27
Operators . D-29
Static Methods . D-29

Index
vii

viii Contents

1

Getting Started

This chapter introduces the MATLAB Compiler and its uses. It also highlights differences between
this version and previous versions.

Introduction (p. 1-2) A brief overview

Upgrading from Previous Compiler
Releases (p. 1-4)

Compatibility between releases

Differences Between MATLAB
Compiler 4 and Previous Versions of
the MATLAB Compiler (p. 1-5)

Changes between this version and previous ones

Uses of the MATLAB Compiler
(p. 1-13)

High-level descriptions of what the MATLAB Compiler
can do

Quick Start (p. 1-16) Summarizes the basic steps to create and deploy
stand-alone applications and libraries

Limitations and Restrictions (p. 1-20) Restrictions regarding what can be compiled

MATLAB Compiler Licensing (p. 1-25) How the MATLAB Compiler license model works

1 Getting Started

1-2
Introduction
MATLAB® Compiler Version 4 takes M-files as input and generates
redistributable, stand-alone applications or software components. These
resulting applications and components are platform specific. The MATLAB
Compiler can generate these kinds of applications or components:

• Stand-alone applications. Stand-alone applications do not require MATLAB
at run-time; they can run even if MATLAB is not installed on the end-user’s
system.

• C and C++ shared libraries (dynamically linked libraries, or DLLs, on
Microsoft Windows). These can be used without MATLAB on the end-user’s
system.

• Excel add-ins; requires MATLAB Builder for Excel

• COM objects; requires MATLAB Builder for COM

The MATLAB Compiler supports all the functionality of MATLAB, including
objects. In addition, no special considerations are necessary for private and
method functions; they are handled by the Compiler.

Note Some toolboxes will not compile with MATLAB Compiler 4. Particular
functionality of some toolboxes will also not compile. For more information
regarding the compilability of toolboxes, see the MATLAB Compiler product
page on the Web.

Before You Begin
Before reading this book, you should already be comfortable writing M-files. If
you are not, see Programming in the MATLAB documentation.

It is useful to note the distinction between the MATLAB Compiler and the
MATLAB interpreter. The MATLAB interpreter refers to the application that
accepts MATLAB commands, executes M-files and MEX-files, and behaves as
described in the MATLAB documentation. When you use MATLAB, you are
using the MATLAB interpreter. The MATLAB Compiler refers to this product,
which takes M-files as input and generates stand-alone applications or
software components. The MATLAB Compiler is invoked with the mcc
command.

Introduction
Note This book distinguishes references to the MATLAB Compiler by using
the word “Compiler” with a capital C. References to “compiler” with a
lowercase c refer to your C or C++ compiler.
1-3

1 Getting Started

1-4
Upgrading from Previous Compiler Releases
MATLAB Compiler 4 is compatible with previous releases of the Compiler.
M-files that you compiled with a previous version of the MATLAB Compiler
should compile with this version.

You can recompile any of your existing M-files that are compatible with
MATLAB Release 14 products. There are no restrictions on the contents of your
M-files other than compatibility with Release 14.

In Compiler 4, the generated API is different from previous versions of the
Compiler. If you develop software components, you will need to adjust to the
new API. See Appendix D, “C++ Utility Library Reference,” for more
information.

Differences Between MATLAB Compiler 4 and Previous Versions of the MATLAB Compiler
Differences Between MATLAB Compiler 4 and Previous
Versions of the MATLAB Compiler

This section highlights significant differences between MATLAB Compiler 4
and previous versions of the MATLAB Compiler.

Compiler 4 is a deployment tool for creating deliverables that can be
distributed to other users. This version of the MATLAB Compiler fully
supports all features of the MATLAB language including objects.

• Compiler 4 uses the new MATLAB Component Runtime (MCR) instead of
the MATLAB C/C++ Math and Graphics Libraries. The MCR is a
stand-alone set of shared libraries that enable the execution of encrypted
M-files created using the MATLAB Compiler. For more information, see
“Overview of the MATLAB Compiler Technology” on page 3-2.

• Compiler 4 only generates code for interface functions (wrappers), whereas
previous versions generated code for the entire M-file. For more information
on interface/wrapper differences, see “Wrapper Code Differences” on
page 1-6.

• Compiler 4 is not intended for code translation, but rather, as a deployment
tool. Some C code is generated to start the backend run-time environment.
Previous versions of the MATLAB Compiler used to generate full C or C++
code, but to gain the ability to compile the entire MATLAB language, the
product was changed.

• Compiler 4 has deprecated options that involve code generation and
formatting. For more information, see “Deprecated Compiler Options” on
page 1-7.

• Compiler 4 has deprecated some wrapper options and their associated
bundle files. For more information, see “Deprecated Wrapper Options” on
page 1-9.

• Compiler 4 does not use the mglinstaller for deploying applications. It has
been replaced by the MCRInstaller.

• Compiler 4 is supported on Microsoft Windows and Linux only. We expect to
add additional platforms in a future release.

• Compiler 4 includes several new options. For more information, see “New
Compiler Options” on page 1-9.

• Compiler 4 does not include the MATLAB Add-in for Visual Studio.
1-5

1 Getting Started

1-6
• Compiler 4 does not speed up applications. There is no speed difference
between a compiled application and one running in MATLAB. The compiled
application will run as fast as MATLAB with the JIT Accelerator.

• Compiler 4 does not support the compilation of MEX-files and Simulink
S-functions from M-functions because features in MATLAB 7 make this
functionality redundant. The MATLAB JIT Accelerator makes compilation
for speed obsolete, and the MATLAB pcode (preparsed code) function enables
you to hide your proprietary algorithms.

• Compiler 4 has deprecated the set of imputed functions including mbchar,
mbcharscalar, mbcharvector, mbint, mbintscalar, mbintvector, mbreal,
mbrealscalar, mbrealvector, mbscalar, and mbvector. Compiler 4 makes
the need for these functions. obsolete.

• In previous versions of the MATLAB Compiler, you needed to use
mccsavepath if the MATLAB Compiler was going to be invoked from a shell
(DOS or UNIX) prompt. With this release of the Compiler, this step is no
longer needed. Consequently, mccsavepath is no longer available with
Compiler 4.

• MATLAB does not support the loading of MATLAB Compiler-generated
libraries via the loadlibrary function.

Wrapper Code Differences
Wrappers, or wrapper files, contain the required interface between the
MATLAB Compiler-generated code and the supported component type such as
executable or library. Compiler 4 only generates code for interface functions
(wrappers), whereas previous versions generated code for the entire M-file.
There are several differences to be aware of when calling Release 14 Compiler
functions from C or C++:

• Since Compiler 4 does not use the MATLAB C/C++ Math and Graphics
libraries, the various mlf functions previously available with the libraries
are no longer available.

• The initialize routine now returns a status flag that can be used to test if
the library was initialized properly.

Difference in the Exported Function Signature
The interface to the mlf functions generated by the Compiler from your M-file
routines has changed in this version of the Compiler. Unlike previous versions

Differences Between MATLAB Compiler 4 and Previous Versions of the MATLAB Compiler
of the MATLAB Compiler, all the return values are passed as input to the
function. The return value of these functions is void. The generic signature of
the exported mlf functions is

• M-functions with no return values
void mlf<function-name>(<list_of_input_variables>);

• M-functions with at least one return value
void mlf<function-name>(int number_of_return_values,
<list_of_pointer_to_return_variables>,
<list_of_input_variables>);

Refer to the header file generated for your library for the exact signature of the
exported function.

Note These wrapper file differences only affect users who build libraries;
they do not affect users who build executables.

Deprecated Compiler Options
MATLAB Compiler 4 is easier to use than previous versions, yet is a more
powerful tool. In simplifying the Compiler, some of the options that were
available in earlier releases became unnecessary and are not available in this
release. The following options are no longer supported and will produce errors.

Table 1-1: Deprecated Compiler Options

Option Description

A Code annotation

B pcode Generate P-code

F Format parameters

h Helper functions

i Include specified M-files
1-7

1 Getting Started

1-8
l Line/file numbers (This option has changed
and now means “library.”)

L Target language

O Optimized code

p Generate C++ code (This option has changed
and now means “add directory to compilation
path in an order-sensitive context.”)

S Macro to generate Simulink S-function

t Translate M-code to C/C++ code

u Specifies number of inputs for Simulink
S-function

x Macro to generate MEX-function

y Specifies number of outputs for Simulink
S-function

Table 1-1: Deprecated Compiler Options (Continued)

Option Description

Differences Between MATLAB Compiler 4 and Previous Versions of the MATLAB Compiler
Deprecated Wrapper Options
The following wrapper options and their associated bundle files are deprecated
and are replaced by the new ones.

Note You no longer need to use -B sgl and -B sglcpp to access Handle
Graphics® functions. All compiled applications have access to graphics by
default.

New Compiler Options
The following options are new in Compiler 4.

Wrapper Option/Bundle File Replaced By

B csglcom
B csglexcel
B csglsharedlib
B cppsglcom
B cppsglexcel

B ccom
B cexcel
B csharedlib
B cppcom
B cppexcel

W comhg
W excelhg
W libhg
W mainhg

W com
W excel
W lib
W main

Option Description

a filename Add filename to archive; specifies files to be
directly added to the CTF archive.

l Macro that generates a function library. (The
meaning of this option has changed since
Release 13.)

N Clears the path of all but a minimal, required
set of directories.
1-9

1 Getting Started

1-1
Add to Archive. Use the -a option to specify files that should be directly added to
the Component Technology File (CTF) archive. The Compiler looks for these
files on the MATLAB path, so specifying the full pathname is optional. These
files are not passed to mbuild, so you can include files such as data files. For
example,

mcc -m foo.m -a data.mat -a /docs/help.txt

Multiple -a options are permitted, but each instance must be followed by the
name of a file (specified by full or partial path) to add to the CTF archive. You
can place the -a option anywhere in the mcc command line.

Files that are not MATLAB files, such as .c, .cpp, or .obj, that appear on the
mcc command line are passed directly to mbuild.

Generate Library. Use the -l macro to generate a function library. The -l option
is equivalent to

-W lib -T link:lib

It generates library wrapper functions for each M-file on the command line and
calls your C compiler to build a shared library, which exports these functions.
The library name is the component name, which is derived from the name of
the first M-file on the command line.

Clear Path of All But Minimal Directories. Use the -N option to clear the path of all
directories except the following necessary ones (this list is subject to change
over time):

• <matlabroot>/toolbox/matlab
• <matlabroot>/toolbox/local
• <matlabroot>/toolbox/compiler

p <directory> Add directory to compilation path in an
order-sensitive context; requires -N option.

R -nojvm
R -nojit

Run-time; overrides MCR options; same as
MATLAB startup options of the same name;
only used with executable target.

Option Description
0

Differences Between MATLAB Compiler 4 and Previous Versions of the MATLAB Compiler
This option also retains all subdirectories of the above list that appear on the
MATLAB path at compile time. Including -N on the mcc command line also
allows you to replace directories from the original path, while retaining the
relative ordering of the included directories. All subdirectories of the included
directories that appear on the original path are also included.

Note This book uses <matlabroot> to represent the MATLAB root directory.

Add Directory to Compilation Path. Use the -P option to add a directory to the
compilation path in an order-sensitive context. The syntax is

p <directory>

where <directory> is the directory to be included. If <directory> is not passed
as an absolute path, it is assumed to be under the current working directory.
The rules for how these directories are included are as follows:

• If a directory is included with -p that is on the original MATLAB path, the
directory and all its subdirectories that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a directory is included with -p that is not on the original MATLAB path,
that directory is not included in the compilation.

• If a path is added with the -I option while this feature is active (-N has been
passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the path is
added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

Run-Time. Use the -R option to override the MCR run-time options.

Note The -R option is only available when building stand-alone applications.
It is not available when building components or libraries.
1-11

1 Getting Started

1-1
You can override any of these run-time options. These options are on by
default.

These are valid uses of the -R option.

mcc -m -R "-nojvm -nojit" -v foo.m
mcc -m -R "-nojvm" -v -R "-nojit" foo.m
mcc -m -R -nojvm -R -nojit foo.m
mcc -m -R -nojvm -v foo.m
mcc -m -R -nojvm -R -nojit foo.m

This example is invalid.

mcc -m -R -nojvm -nojit foo.m

MCR Option Description

-nojvm Do not use the Java Virtual Machine (JVM).

-nojit Do not use the JIT Accelerator (binary code
generation used to accelerate M-file execution).
2

Uses of the MATLAB Compiler
Uses of the MATLAB Compiler
This section introduces the various targets that the MATLAB Compiler can
generate. You can find complete information about these targets and how to
generate them in the corresponding sections throughout this book.

• Stand-Alone Applications

• Libraries

• COM Object

• Excel Add-in

Wrapper Files
The MATLAB Compiler (mcc) generates redistributable, stand-alone
applications or software components from M-files. The specific final target can
be any of the supported component types including stand-alone executable,
library, or component. The Compiler generates the appropriate wrapper file
based on the desired target. A wrapper file contains the required interface
between the compiled application and the supported executable type.

Wrapper files differ depending on the execution environment. To provide the
required interface, the wrapper

• Performs wrapper-specific initialization and termination.

• Defines data arrays containing path information, encryption keys, and other
information needed by the MATLAB Component Runtime (MCR).

• Provides the necessary code to forward calls from the interface functions to
the MATLAB functions in the MCR.

For example, the wrapper for a stand-alone executable contains the main
function. The wrapper for a library contains the entry points for each public
M-file function. You can find additional details specific to each wrapper type in
each target’s chapter throughout this book.

The Component Technology File (CTF) produced by the MATLAB Compiler is
independent of the final target type — executable or library, but the CTF
archive is platform specific. The wrapper file provides the necessary interface
to the target type.
1-13

1 Getting Started

1-1
Stand-Alone Applications
The MATLAB Compiler, when invoked with the -m macro option, takes the
input M-files and produces the required wrapper file suitable for a stand-alone
application. Then, your C or C++ compiler compiles this code and links against
the MCR, which is a stand-alone set of shared libraries that enable the
execution of M-files. For example, to generate a stand-alone executable from
the file example.m, use

mcc -m example

For overview information on creating stand-alone applications and deploying
them, see “Quick Start” on page 1-16. For detailed information on stand-alone
applications, see Chapter 5, “Stand-Alone Applications.”

Libraries
You can use the -l option to create a C shared library from a set of M-files. For
example

mcc -l file1.m file2.m file3.m

The -l option is a bundle option that expands into

-W lib -T link:lib

The -W lib option tells the MATLAB Compiler to generate a function wrapper
for a shared library and call it libfile1. The -T link:lib option specifies the
target output as a shared library. For overview information on creating shared
libraries and deploying them, see “Quick Start” on page 1-16. For detailed
information on creating libraries, see Chapter 6, “Libraries.”

Builder Products

MATLAB Builder for COM
With the optional MATLAB Builder for COM, you can create COM components
that can be used in any application that works with COM objects.

MATLAB Builder for COM uses the Compiler to create Component Object
Model (COM) objects from MATLAB M-files. The collection of M-files is
translated into a single COM class. MATLAB Builder for COM supports
multiple classes per component. For more information, see “COM Object
Target” on page 7-3.
4

Uses of the MATLAB Compiler
MATLAB Builder for Excel
With the optional MATLAB Builder for Excel, you can automatically generate
a Visual Basic Application file (.bas) and a plug-in DLL from your MATLAB
model that can be imported into Excel as a stand-alone function.

MATLAB Builder for Excel compiles MATLAB M-files into a COM object that
can be used as an Excel plug-in. The collection of M-files is translated into a
single Excel plug-in. MATLAB Builder for Excel supports one class per
component. For more information, see “Excel Plug-In Target” on page 7-8.

Note MATLAB Builder for COM and MATLAB Builder for Excel are
available only on Windows.
1-15

1 Getting Started

1-1
Quick Start

Note From time to time, additional Compiler examples may be added to the
File Exchange section of MATLAB Central on the MathWorks Web site. You
can check for these examples at the File Exchange.

This section provides the basic steps of how to use the MATLAB Compiler to
create components (applications and libraries) from MATLAB M-files. These
components can then be deployed to machines that do not have MATLAB
installed on them.

This quick start is meant for users who only want to know the steps to follow
to create components. If your needs are more advanced or you want background
information on the process, you will need to browse through the book and locate
what you need.

Note Before you can use the Compiler, you must have it installed and
configured properly on your system.

Compiling a Stand-Alone Application
To create a stand-alone application from the M-file mymfunction, use the
command

mcc m mymfunction.m

This creates a stand-alone executable named mymfunction.exe on Windows
and mymfunction on Linux.

Compiling a Shared Library
To create a shared library from the M-file mymfunction, use the command

mcc l mymfunction.m

This creates a shared library named mymfunction.dll on Windows and
mymfunction.so on Linux.
6

Quick Start
Stand-Alone Application that Calls a Library
To create a stand-alone (driver) application from a wrapper file named
mywrappercode that calls the above library mymfunction, use the command

mbuild mywrappercode.c mymfunction.lib (On Windows)
mbuild mywrappercode.c mymfunction.so (On Linux)

Note You must call mclInitializeApplication once at the beginning of
your driver application. You must make this call before calling any other
MathWorks functions. See “Calling a Shared Library” on page 6-9 for more
information.

Testing Components on Development Machine
To test either component on your development machine, make sure you have
your path set properly.

Windows. Add the following directory to your system PATH environment
variable.

<matlabroot>\bin\win32

Linux. Add the following directories to your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<matlabroot>/bin/glnx86:
<matlabroot>/sys/os/glnx86:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<matlabroot>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults
1-17

1 Getting Started

1-1
You can then run the compiled applications on your development machine to
test them.

Deploying Components to Other Machines
To deploy your component to a target machine that does not have the same
version of MATLAB installed as your development machine (or any version of
MATLAB for that matter), you need to package the components and configure
the target machines as follows.

Windows

• Your component, i.e., the stand-alone executable or shared library

• The CTF archive that is created for your component
(<component_name>.ctf)

• MCRInstaller.exe (This file is located in the
<matlabroot>\toolbox\compiler\deploy\win32
directory.)

On the target machine, do the following:

1 Install the MCR by running the MCR Installer in a directory. For example,
run MCRInstaller.exe in C:\MCR.

2 Copy the component and CTF archive to your application root directory, for
example, C:\approot.

3 Add the following directory to your system path:

<mcr_root>\runtime\win32

4 Test the component.

Linux

• Your component, i.e., the stand-alone executable or shared library

• The CTF archive that is created for your component
(<component_name>.ctf)

• MCRInstaller.zip
8

Quick Start
To create MCRInstaller.zip, execute the following command at the MATLAB
command prompt.

buildmcr

This command puts MCRInstaller.zip in the directory
<matlabroot>/toolbox/compiler/deploy. If you do not have write access to
this directory, you can specify the destination directory as an input to
buildmcr.

On the target machine, do the following:

1 Install the MCR by unzipping MCRInstaller.zip in a directory, for example,
/home/<user>/MCR. You may choose any directory except <matlabroot> or
any directory below <matlabroot>.

2 Copy the component and CTF archive to your application root directory, for
example, /home/<user>/approot.

3 Update your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<mcr_root>/runtime/glnx86:
<mcr_root>/sys/os/glnx86:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<mcr_root>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults

4 Test the component.
1-19

1 Getting Started

1-2
Limitations and Restrictions

Compiling MATLAB and Toolboxes
The MATLAB Compiler supports the full MATLAB language and almost all
MATLAB based toolboxes. However, some limited MATLAB and toolbox
functionality is not licensed for compilation.

• Most of the prebuilt graphical user interfaces included in MATLAB and its
companion toolboxes will not compile.

• Functionality that cannot be called directly from the command line will not
compile.

• Some toolboxes, such as the Symbolic Math Toolbox, will not compile.

The code generated by the MATLAB Compiler is not suitable for embedded
applications.

To see a full list of MATLAB Compiler limitations, visit
http://www.mathworks.com/products/compiler/compiler_support.html.

MATLAB Code
MATLAB Compiler 4.0 supports much of the functionality of MATLAB.
However, there are some limitations and restrictions that you should be aware
of. This version of the Compiler cannot create interfaces for script M-files (See
“Converting Script M-Files to Function M-Files” on page 4-17 for further
details.)

Incorporating Updated M-Files into an Application
From time to time, MathWorks Technical Support distributes new versions of
M-files to correct bugs via the Web. To incorporate these changes into your
deployed applications, you must first apply the patch and then rerun buildmcr
to generate an up-to-date version of the MCRInstaller. To deploy the bug fixes
to your customers, you must ship this new MCRInstaller with your new
applications and make the installer available to current customers so they may
update their installation.
0

Limitations and Restrictions
Stand-Alone Applications
The restrictions noted in the previous section also apply to stand-alone
applications. In addition, there is a set of functions that is not supported in
stand-alone mode. These functions fall into the these categories:

• Functions that print or report MATLAB code from a function, for example,
the MATLAB help function or debug functions, will not work.

• Simulink functions, in general, will not work.

• Functions that require a command line, for example, the MATLAB lookfor
function, will not work.

• clc, home, and savepath will not do anything in deployed mode.

Returned values from stand-alone applications will be 0 for successful
completion or a nonzero value otherwise.

In addition, there are functions that have been identified as nondeployable due
to licensing restrictions.

Table 1-2: Unsupported Functions

add_block add_line applescript close_system

dbclear dbcont dbdown dbquit

dbstack dbstatus dbstep dbstop

dbtype dbup delete_block delete_line

echo edit fields get_param

help home inmem keyboard

linmod mislocked mlock more

munlock new_system open_system pack

rehash set_param sim simget

simset sldebug type
1-21

1 Getting Started

1-2
Fixing Callback Problems: Missing Functions
When the Compiler creates a stand-alone application, it compiles the M-file(s)
you specify on the command line and, in addition, it compiles any other M-files
that your M-file(s) calls. The Compiler uses a dependency analysis, which
determines all the functions on which the supplied M-files, MEX-files, and
P-files depend. The dependency analysis may not locate a function if the only
place the function is called in your M-file is a call to the function either

• In a callback string, or

• In a string passed as an argument to the feval function or an ODE solver.

The Compiler does not look in these text strings for the names of functions to
compile.

Symptom
Your application runs, but an interactive user interface element, such as a
push button, does not work. The compiled application issues this error
message.

An error occurred in the callback : change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
To eliminate this error, create a list of all the functions that are specified only
in callback strings and pass these functions using separate %#function
pragma statements. (See “Finding Missing Functions in an M-File” on
page 1-23 for suggestions about finding functions in callback strings.) This
overrides the Compiler’s dependency analysis and instructs it to explicitly
include the functions listed in the %#function pragmas.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure the Compiler
processes the change_colormap M-file, list the function name in the
%#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap
2

Limitations and Restrictions
peaks;

p_btn = uicontrol(gcf,...
'Style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

Note Instead of using the %#function pragma, you can specify the name of
the missing M-file on the Compiler command line using the -a option.

Finding Missing Functions in an M-File
To find functions in your application that may need to be listed in a %#function
pragma, search your M-file source code for text strings specified as callback
strings or as arguments to the feval, fminbnd, fminsearch, funm, and fzero
functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your M-file. This will find all the Callback properties
defined by Handle Graphics objects, such as uicontrol and uimenu. In
addition, this will find the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on Linux
Several warnings may appear when you run a stand-alone application on
Linux. This section describes how to suppress these warnings.

To suppress the app-defaults warnings, set XAPPLRESDIR to point to
<mcr>/X11/app-defaults.

To suppress the libjvm.so warning, place the following on the
LD_LIBRARY_PATH.

<mcr>/sys/java/jre/glnx86/jre1.4.1/lib/i386/i386
<mcr>/sys/java/jre/glnx86/jre1.4.1/lib/i386/client
1-23

1 Getting Started

1-2
Alternately, you can use the MATLAB Compiler option -R -nojvm to set your
application’s nojvm run-time option, if the application is capable of running
without Java.
4

MATLAB Compiler Licensing
MATLAB Compiler Licensing

Deployed Applications
Before you deploy applications or components to your users, you should be
aware of the license conditions. Consult the Deployment Addendum in The
MathWorks License Agreement at www.mathworks.com/license for terms and
conditions of deployment.

Using MATLAB Compiler Licenses for Development
You can run the MATLAB Compiler from the MATLAB command prompt
(MATLAB mode) or the DOS/UNIX prompt (stand-alone mode).

Running the Compiler in MATLAB Mode
When you run the Compiler from “inside” of MATLAB, that is, you run mcc
from the MATLAB command prompt, you hold the Compiler license as long as
MATLAB remains open. To give up the Compiler license, exit MATLAB.

Running the Compiler in Stand-Alone Mode
If you run the Compiler from a DOS or UNIX prompt, you are running from
“outside” of MATLAB. In this case, the Compiler

• Does not require MATLAB to be running on the system where the Compiler
is running

• Gives the user a dedicated 30 minute time allotment during which the user
has complete ownership over a license to the Compiler

Each time a user requests the Compiler, the user begins a 30 minute time
period as the sole owner of the Compiler license. Anytime during the 30 minute
segment, if the same user requests the Compiler, the user gets a new 30 minute
allotment. When the 30-minute time interval has elapsed, if a different user
requests the Compiler, the new user gets the next 30 minute interval.

When a user requests the Compiler and a license is not available, the user
receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best way
1-25

1 Getting Started

1-2
to guarantee that all MATLAB Compiler users have constant access to the
Compiler is to have an adequate supply of licenses for your users.
6

2

Installation and
Configuration

This chapter describes the system requirements for the MATLAB Compiler. It also contains
installation and configuration information for both Microsoft Windows and Linux.

When you install your ANSI C or C++ compiler, you may be required to provide specific configuration
details regarding your system. This chapter contains information for each platform that can help you
during this phase of the installation process.

System Requirements (p. 2-2) Software requirements for the MATLAB Compiler and a
supported C/C++ compiler

Installation (p. 2-4) Steps to install the MATLAB Compiler and a supported
C/C++ compiler

Configuration (p. 2-7) Configuring a supported C/C++ compiler to work with the
MATLAB Compiler

Special Compiler Notes (p. 2-11) Known limitations of the supported C/C++ compilers

Options Files (p. 2-12) More detailed information on MATLAB Compiler options
files for users who need to know more about how they
work

2 Installation and Configuration

2-2
System Requirements
To install the MATLAB Compiler 4, you must have MATLAB 7 (Release 14)
installed on your system. The MATLAB Compiler imposes no operating system
or memory requirements beyond those that are necessary to run MATLAB. The
MATLAB Compiler consumes a small amount of disk space.

The MATLAB Compiler requires that a supported ANSI C or C++ compiler be
installed on your system. Certain output targets require particular compilers.

In general, the MATLAB Compiler supports the current release of a
third-party compiler and its previous release. Since new versions of compilers
are released on a regular basis, it is important to check our Web site for the
latest supported compilers.

Supported Third-Party Compilers
For an up-to-date list of all the compilers supported by MATLAB and the
MATLAB Compiler, see the MathWorks Technical Support Department’s
Technical Notes at

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Supported ANSI C and C++ Windows Compilers
Use one of the following 32-bit C/C++ compilers that create 32-bit Windows
dynamically linked libraries (DLLs) or Windows NT applications:

• Lcc C version 2.4 (included with MATLAB). This is a C only compiler; it does
not work with C++.

• Borland C++ versions 5.3, 5.4, 5.5, 5.6, and free 5.5. (You may see references
to these compilers as Borland C++Builder versions 3.0, 4.0, 5.0, and 6.0.) For
more information on the free Borland compiler and its associated command
line tools, see http://community.borland.com.

• Microsoft Visual C/C++ (MSVC) versions 6.0, 7.0, and 7.1.

System Requirements
Note The only compilers that support the building of COM objects are
Borland C++Builder (versions 3.0, 4.0, 5.0, and 6.0) and Microsoft Visual
C/C++ (versions 6.0, 7.0, and 7.1). The Borland C++Builder products require
you to have the MIDL Compiler provided by Microsoft to create COM objects.

Supported ANSI C and C++ Linux Compilers
The MATLAB Compiler supports

• The GNU C compiler, gcc

• The system’s native ANSI C compiler

• The GNU C++ compiler, g++
2-3

2 Installation and Configuration

2-4
Installation
The MATLAB Compiler requires a supported ANSI C or C++ compiler installed
on your system. This section describes the installation of the MATLAB
Compiler and an ANSI C or C++ compiler.

Installing the MATLAB Compiler

Windows
To install the MATLAB Compiler on Windows, follow the instructions in the
Installation Guide for Windows. If you have a license to install the MATLAB
Compiler, it will appear as one of the installation choices that you can select as
you proceed through the installation process.

If the Compiler does not appear in your list of choices, contact The MathWorks
to obtain an updated License File (license.dat) for multiuser network
installations, or an updated Personal License Password (PLP) for single-user,
standard installations.

You can contact the MathWorks:

• Via the Web at www.mathworks.com. On the MathWorks home page, click on
Support, then click on the Access Login, and follow the instructions.

• Via e-mail at service@mathworks.com

Linux
To install the MATLAB Compiler on Linux workstations, follow the
instructions in the Installation Guide for UNIX. If you have a license to install
the MATLAB Compiler, it appears as one of the installation choices that you
can select as you proceed through the installation process. If the MATLAB
Compiler does not appear as one of the installation choices, contact The
MathWorks to get an updated license file (license.dat).

Installing an ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your C or C++ compiler. Be sure to test the C or C++ compiler to
make sure it is installed and configured properly. Typically, the compiler
vendor provides some test procedures.

Installation
Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult the documentation or customer support
organization of your C or C++ compiler vendor.

When you install your C or C++ compiler, you might encounter configuration
questions that require you to provide particular details. These tables provide
information on some of the more common issues.

Windows

Issue Comment

Installation options We recommend that you do a full
installation of your compiler. If you do a
partial installation, you may omit a
component that the MATLAB Compiler
relies on.

Installing debugger files For the purposes of the MATLAB Compiler,
it is not necessary to install debugger (DBG)
files. However, you may need them for other
purposes.

Microsoft Foundation
Classes (MFC)

This is not required.

16-bit DLL/executables This is not required.

ActiveX This is not required.

Running from the command
line

Make sure you select all relevant options for
running your compiler from the command
line.
2-5

2 Installation and Configuration

2-6
Updating the registry If your installer gives you the option of
updating the registry, you should do it.

Installing Microsoft Visual
C/C++ Version 6.0

If you need to change the location where this
compiler is installed, you must change the
location of the Common directory. Do not
change the location of the VC98 directory
from its default setting.

Linux

Issue Comment

Determine which C or C++ compiler
is installed on your system.

See your system administrator.

Determine the path to your C or
C++ compiler.

See your system administrator.

Windows (Continued)

Issue Comment

Configuration
Configuration
This section describes how to configure a C or C++ compiler to work with the
MATLAB Compiler. There is a MATLAB utility called mbuild that simplifies
the process of setting up a C or C++ compiler. Typically, you only need to use
the mbuild utility’s setup option to initially specify which third-party compiler
you want to use. For more information on the mbuild utility, see the mbuild
reference page.

Note In many cases, especially if you have the latest release of a third-party
C/C++ compiler installed in its default location, you do not need to run
mbuild -setup. However, there is no harm in doing so.

Introducing the mbuild Utility
The MathWorks utility, mbuild, lets you customize the configuration and build
process. The mbuild script provides an easy way for you to specify an options
file that lets you

• Set your compiler and linker settings

• Change compilers or compiler settings

• Build your application

The MATLAB Compiler (mcc) automatically invokes mbuild under certain
conditions. In particular, mcc -m or mcc -l invokes mbuild to perform
compilation and linking.

Configuring an ANSI C or C++ Compiler

Compiler Options Files
Options files contain flags and settings that control the operation of your
installed C and C++ compiler. Options files are compiler-specific, i.e., there is
a unique options file for each supported C/C++ compiler, which The
MathWorks provides.
2-7

2 Installation and Configuration

2-8
When you select a compiler to use with the MATLAB Compiler, the
corresponding options file is activated on your system. To select a default
compiler, use

mbuild -setup

Additional information on the options files is provided in this chapter for those
users who may need to modify them to suit their own needs. Many users never
have to be concerned with the inner workings of the options files and only need
the setup option to initially designate a C or C++ compiler. If you need more
information on options files, see “Options Files” on page 2-12.

Windows. Executing the command on Windows gives

mbuild -setup
Please choose your compiler for building standalone MATLAB
applications:

Would you like mbuild to locate installed compilers [y]/n? n

Select a compiler:
[1] Borland C++Builder version 6.0
[2] Borland C++Builder version 5.0
[3] Borland C++Builder version 4.0
[4] Borland C++Builder version 3.0
[5] Borland C/C++ version 5.02
[6] Borland C/C++ version 5.0
[7] Borland C/C++ (free command line tools) version 5.5
[8] Lcc C version 2.4
[9] Microsoft Visual C/C++ version 7.1
[10] Microsoft Visual C/C++ version 7.0
[11] Microsoft Visual C/C++ version 6.0

[0] None

Compiler: 11

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Applications\Microsoft Visual Studio. Do you want to use this
compiler [y]/n? y

Configuration
Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Applications\Microsoft Visual Studio

Are these correct?([y]/n): y

Try to update options file:
C:\WINNT\Profiles\username\Application
Data\MathWorks\MATLAB\R14\compopts.bat
From template:
\\sys\MATLAB\BIN\WIN32\mbuildopts\msvc60compp.bat

Done . . .
 .
 .
Updated ...

The preconfigured options files that are included with MATLAB for Windows
are shown below.

Options File Compiler

lcccompp.bat Lcc C, Version 2.4 (included with
MATLAB)

msvc60compp.bat
msvc70compp.bat
msvc71compp.bat

Microsoft Visual C/C++, Version 6.0
Microsoft Visual C/C++, Version 7.0
Microsoft Visual C/C++, Version 7.1

bcc53compp.bat
bcc54compp.bat
bcc55compp.bat
bcc56compp.bat

Borland C++ Builder 3
Borland C++ Builder 4
Borland C++ Builder 5
Borland C++ Builder 6
2-9

2 Installation and Configuration

2-1
Linux. Executing the command on Linux gives

mbuild -setup

Using the 'mbuild -setup' command selects an options file that is
placed in ~/.matlab/R14 and used by default for 'mbuild'. An
options file in the current working directory or specified on the
command line overrides the default options file in ~/.matlab/R14.

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the 'mbuild -f' command
(see 'mbuild -help' for more information).

The options files available for mbuild are:

1: <matlabroot>/bin/mbuildopts.sh :
Build and link with the MATLAB Compiler and default C/C++ compiler

<matlabroot>/bin/mbuildopts.sh is being copied to
/home/user/.matlab/R14/mbuildopts.sh

The preconfigured options file that is included with MATLAB for Linux is
mbuildopts.sh, the system native ANSI compiler.
0

Special Compiler Notes
Special Compiler Notes
This section describes known limitations of particular compilers.

Known Windows Compiler Limitations
There are several known restrictions regarding the use of supported compilers:

• The Lcc C compiler does not support C++.

• The only compilers that support the building of COM objects are Borland
C++Builder (versions 3.0, 4.0, 5.0, and 6.0) and Microsoft Visual C/C++
(versions 6.0, 7.0, and 7.1).

Note The Borland C++Builder products require you to have the MIDL
Compiler provided by Microsoft to create COM objects.

• There is a limitation with the Borland C++ Compiler. In your M-code, if you
use a constant number that includes a leading zero and contains the digit “8”
or “9” before the decimal point, the Borland compiler will display the error
message

Error <file>.c <line>: Illegal octal digit in function
<functionname>

For example, the Borland compiler considers 009.0 an illegal octal integer as
opposed to a legal floating-point constant, which is how it is defined in the
ANSI C standard.

As an aside, if all the digits are in the legal range for octal numbers (0-7),
then the compiler will incorrectly treat the number as a floating-point value.
So, if you have code such as
x = [007 06 10];

and want to use the Borland compiler, you should edit the M-code to remove
the leading zeros and write it as
x = [7 6 10];
2-11

2 Installation and Configuration

2-1
Options Files
This information is provided for users who need to know more about how
options files work.

Locating the Options File

Windows
To locate your options file on Windows, the mbuild script searches the following
locations:

• Current directory

• The user profile directory (see the following section for more information
about this directory)

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

The User Profile Directory Under Windows. The Windows user profile directory is
a directory that contains user-specific information such as desktop appearance,
recently used files, and Start menu items. The mbuild utility stores its options
files, compopts.bat, which is created during the -setup process, in a
subdirectory of your user profile directory, named Application
Data\MathWorks\MATLAB\R14. Under Windows with user profiles enabled, your
user profile directory is %windir%\Profiles\username. Under Windows
with user profiles disabled, your user profile directory is %windir%. You can
determine whether or not user profiles are enabled by using the Passwords
control panel.

Linux
To locate your options file on Linux, the mbuild script searches the following
locations:

• Current directory
• $HOME/.matlab/R14
• <matlabroot>/bin
2

Options Files
mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Changing the Options File
Although it is common to use one options file for all of your Compiler-related
work, you can change your options file at anytime. The setup option resets your
default compiler so that the new compiler is used every time. Use

mbuild -setup

to reset your C or C++ compiler for future sessions.

Windows

Modifying the Options File. You can use of the setup option to change your options
file settings on Windows. The setup option copies the appropriate options file
to your user profile directory.

To modify your options file on Windows:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file in your user profile directory to
correspond to your specific needs and save the modified file.

After completing this process, the mbuild script will use the new options file
everytime with your modified settings.

Linux
The setup option creates a user-specific, matlab directory in your individual
home directory and copies the appropriate options file to the directory. (If the
directory already exists, a new one is not created.) This matlab directory is used
for your individual options files only; each user can have his or her own default
options files (other MATLAB products may place options files in this directory).
Do not confuse these user-specific matlab directories with the system matlab
directory, where MATLAB is installed.

Modifying the Options File. You can use the setup option to change your options
file settings on Linux. For example, if you want to make a change to the current
2-13

2 Installation and Configuration

2-1
linker settings, or you want to disable a particular set of warnings, you should
use the setup option.

To modify your options file on Linux:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file to correspond to your specific needs and
save the modified file.

This sets your default compiler’s options file to your specific version.
4

3

Compilation Process

This chapter provides an overview of how the MATLAB Compiler works. In addition, it lists the
various sets of input and output files used by the Compiler.

Overview of the MATLAB Compiler
Technology (p. 3-2)

Describes the build process

Input and Output Files (p. 3-6) Lists the files generated by the MATLAB Compiler

Deployment Process (p. 3-8) Describes the general steps used to deploy a product

Working with the MCR (p. 3-12) Describes the steps end-users must follow to run
Compiler-generated applications and components

3 Compilation Process

3-2
Overview of the MATLAB Compiler Technology

MATLAB Component Runtime
MATLAB Compiler 4 uses the MATLAB Component Runtime (MCR), which is
a stand-alone set of shared libraries that enables the execution of M-files. The
MCR provides complete support for all features of the MATLAB language.

Component Technology File
Compiler 4 also uses a Component Technology File (CTF) archive to house the
deployable package. All M-files are encrypted in the CTF archive using the
Advanced Encryption Standard (AES) cryptosystem where symmetric keys are
protected by 1024-bit RSA keys.

Each application or shared library produced by the MATLAB Compiler has an
associated CTF archive. The archive contains all the MATLAB based
executable content (M-files, MEX-files) associated with the component.

Additional Details
Multiple CTF archives, such as COM or Excel components, can coexist in the
same user application, but you cannot mix and match the M-files they contain.
You cannot combine encrypted and compressed M-files from multiple CTF
archives into another CTF archive and distribute them.

All the M-files from a given CTF archive are locked together with a unique
cryptographic key. M-files with different keys will not execute if placed in the
same CTF archive. If you want to generate another application with a different
mix of M-files, you must recompile these M-files into a new CTF archive.

Build Process
The process of creating software components with the MATLAB Compiler are
completely automatic. For example, to create a stand-alone MATLAB
application, you supply the list of M-files that comprise the application. The
Compiler then performs the following operations:

• Dependency analysis

• Code generation

• Archive creation

Overview of the MATLAB Compiler Technology
• Compilation

• Linking

This figure illustrates how the Compiler takes user code and generates a
stand-alone executable.
3-3

3 Compilation Process

3-4
MATLAB Compiler

Dependency
Analysis

Wrapper
Code Generation

Encryption and
Compression of MATLAB
Executable Content

C/C++
Compilation

foo.m bar.m

mcc -m foo.m bar.m

CTF Archiver

foo.ctf

foo_main.c foo_mcc_component_data.c

User-supplied
C/C++ Files

C/C++ CompilerObject Files

Linker

foo.exe

Linking
MATLAB Core
Libraries

MATLAB Component
Runtime (MCR)

Overview of the MATLAB Compiler Technology
Dependency Analysis
The first step determines all the functions on which the supplied M-files,
MEX-files, and P-files depend. This list includes all the M-files called by the
given files as well as files that they call, and so on. Also included are all built-in
functions and MATLAB objects.

Wrapper Code Generation
This step generates all the source code needed to create the target component,
including

• The C/C++ interface code to those M-functions supplied on the command line
(foo_main.c). For libraries and components, this file includes all of the
generated interface functions.

• A component data file that contains information needed to execute the
M-code at run-time. This data includes path information and encryption
keys needed to load the M-code stored in the component’s CTF archive.

Archive Creation
The list of MATLAB executable files (M-files and MEX-files) created during
dependency analysis is used to create a CTF archive that contains the files
needed by the component to properly execute at run-time. The files are
encrypted and compressed into a single file for deployment. Directory
information is also included so that the content is properly installed on the
target machine.

C/C++ Compilation
This step compiles the generated C/C++ files from wrapper code generation
into object code. For targets that support the inclusion of user-supplied C/C++
code on the mcc command line, this code is also compiled at this stage.

Linking
The final step links the generated object files with the necessary MATLAB
libraries to create the finished component.

The C/C++ compilation and linking steps use the mbuild utility that is included
with the MATLAB Compiler.
3-5

3 Compilation Process

3-6
Input and Output Files
This section describes the files created during the compilation process.

Stand-Alone Executable
In this example, the MATLAB Compiler takes the M-files foo.m and bar.m as
input and generates a stand-alone executable called foo.

mcc -m foo.m bar.m

File Description

foo_main.c The main-wrapper C source file containing the program’s
main function. The main function takes the input
arguments that are passed on the command line and
passes them as strings to the foo function.

foo_mcc_component_data.c C source file containing data needed by the MCR to run
the application. This data includes path information,
encryption keys, and other initialization information for
the MCR.

foo.ctf The CTF archive. This file contains a compressed and
encrypted archive of the M-files that make up the
application (foo.m and bar.m). It also contains other files
called by the two main M-files as well as any other
executable content and data files needed at run-time.

foo The main executable file of the application. This file reads
and executes the content stored in the CTF archive. On
Windows, this file is foo.exe.

Input and Output Files
C Shared Library
In this example, the Compiler takes the M-files foo.m and bar.m as input and
generates a C shared library called libfoo.

mcc -W lib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.c The library wrapper C source file containing the exported
functions of the library representing the C interface to
the the two M-functions (foo.m and bar.m) as well as
library initialization code.

libfoo.h The library wrapper header file. This file is included by
applications that call the exported functions of libfoo.

libfoo_mcc_component_data.c C source file containing data needed by the MCR to
initialize and use the library. This data includes path
information, encryption keys, and other initialization for
the MCR.

libfoo.exports The exports file used by mbuild to link the library.

libfoo.ctf The CTF archive. This file contains a compressed and
encrypted archive of the M-files that make up the library
(foo.m and bar.m). This file also contains other files
called by the two main M-files as well as any other
executable content and data files needed at run-time.

libfoo The shared library binary file. On Windows, this file is
libfoo.dll. (Note: UNIX extensions vary depending on
platform. See the External Interfaces documentation for
additional information.)
3-7

3 Compilation Process

3-8
Deployment Process
After creating your component with the MATLAB Compiler, you can
distribute, or deploy, it to others so that they can use it on their machines,
independent of MATLAB.

The deployment process requires that you

1 Package the necessary components depending on the type of generated
application.

2 Distribute them to your end user.

3 Have the end users install them on their systems. During this phase of the
installation process, the end users run MCRInstaller once on their target
machine, that is, the machine where they will run the application or library.
On Windows, MCRInstaller is a self-extracting executable that installs the
necessary components to run your application. On Linux, MCRInstaller is a
ZIP file. See “Installing the MCR on a Deployment Machine” on page 3-12
for additional details on MCRInstaller.

There are specific examples of how to deploy each target in their corresponding
chapters in this book.

Porting Generated Code to a Different Platform
Since binary formats are different on each platform, the various components
generated by the MATLAB Compiler cannot be moved from platform to
platform as is. You can distribute a MATLAB Compiler-generated application
to any target machine that has the same operating system as the machine on
which the application was compiled. For example, if you want to deploy an
application to a Windows machine, you must use the Windows version of the
MATLAB Compiler to build the application on a Windows machine.

To deploy an application to a machine whose operating system is different than
the machine used to develop the application, requires recompiling. You must
recompile the application on the desired targeted platform. For example, If you
want to deploy the previous application that was developed on a Windows
machine to a Linux machine, you must use the MATLAB Compiler on a Linux
machine and completely rebuild the application. Consequently, you must have

Deployment Process
a valid MATLAB Compiler license on both platforms in order to be able to do
this.

Extracting a CTF Archive without Executing the
Component
CTF archives contain executable content (M-files and MEX-files) that need to
be extracted from the archive before they can be executed. The CTF archive
automatically expands the first time you run the MATLAB Compiler-based
component (a MATLAB Compiler-based stand-alone application or an
application that calls a MATLAB Compiler-based shared library or COM
component).

To expand an archive without running the application, you can use the
extractCTF (.exe on Windows) stand-alone utility provided in the
<matlabroot>/toolbox/compiler/deploy/<ARCH> directory, where <ARCH> is
win32 on Windows and glnx86 on Linux. This utility takes the name of the CTF
archive as input and expands the archive into the current working directory.
For example, this command expands hello.ctf into the current working
directory.

extractCTF hello.ctf

The archive expands into a directory called hello_mcr. In general, the name of
the directory containing the expanded archive is <componentname>_mcr, where
componentname is the name of the CTF archive without the extension.

Note To run extractCTF from any directory, you must add
<matlabroot>/toolbox/compiler/deploy/<ARCH> to your PATH environment
variable.

User Interaction with the Compilation Path
The MATLAB Compiler uses a dependency analysis function (depfun) to
determine the list of necessary files to include in the CTF package. In some
cases, this process includes an excessive number of files, for example, when
MATLAB OOPS classes are included in the compilation and it cannot resolve
overloaded methods at compile time. The dependency analysis is an iterative
process that also processes include/exclude information on each pass.
3-9

3 Compilation Process

3-1
Consequently, this process can lead to very large CTF archives resulting in
long compilation times for relatively small applications.

The most effective way to reduce the number of files is to constrain the
MATLAB path that depfun uses at compile time. The Compiler includes
features that enable you to manipulate the path. Currently, there are three
ways to interact with the compilation path:

• addpath and rmpath in MATLAB

• Passing -I <directory> on the mcc command line

• Passing -N and -p directories on the mcc command line (new feature)

addpath and rmpath in MATLAB
If you run the Compiler from the MATLAB prompt, you can use the addpath
and rmpath commands to modify the MATLAB path before doing a compilation.
There are two disadvantages:

• The path is modified for the current MATLAB session only.

• If the Compiler is run outside of MATLAB, this doesn’t work unless a
savepath is done in MATLAB.

Note The path is also modified for any interactive work you are doing in
MATLAB as well.

Passing -I< directory> on the Command Line
You can use the -I option to add a directory to the head of the path used by the
current compilation. This feature is useful when you are compiling files that
are in directories currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are now two new Compiler options that provide more detailed
manipulation of the path. This new feature acts like a “filter” applied to the
MATLAB path for a given compilation. The first new option is -N. Passing -N
on the mcc command line effectively clears the path of all directories except the
following core directories (this list is subject to change over time):

• <matlabroot>/toolbox/matlab
0

Deployment Process
• <matlabroot>/toolbox/local
• <matlabroot>/toolbox/compiler

It also retains all subdirectories of the above list that appear on the MATLAB
path at compile time. Including -N on the command line also allows you to
replace directories from the original path, while retaining the relative ordering
of the included directories. All subdirectories of the included directories that
appear on the original path are also included.

Use the -p option to add a directory to the compilation path in an
order-sensitive context, i.e., the same order in which they are found on your
MATLAB path. The syntax is

p <directory>

where <directory> is the directory to be included. If <directory> is not an
absolute path, it is assumed to be under the current working directory. The
rules for how these directories are included are

• If a directory is included with -p that is on the original MATLAB path, the
directory and all its subdirectories that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a directory is included with -p that is not on the original MATLAB path,
that directory is not included in the compilation. (You can use -I to add it.)

• If a path is added with the -I option while this feature is active (-N has been
passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
directory is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.
3-11

3 Compilation Process

3-1
Working with the MCR

Installing the MCR on a Deployment Machine
Before end users can run MATLAB Compiler-generated components on their
machines, they need to install the MCR, if it is not already present. You only
need to install the MCR one time on a deployment machine.

End users on Windows can use the MCRInstaller utility (MCRInstaller.exe)
to prepare the deployment machine. Linux users must execute the
MCRInstaller, which is a ZIP file, and then manually set the path and
environment variables as required. To prepare the deployment machine, you
need to

• Install the MCR

• Set the path properly

• Set the necessary environment variables

Note If the Linux MCRInstaller.zip file is not present on your machine, you
can generate it using the buildmcr function in MATLAB. For more
information on using buildmcr, see “Deploying the Application” on page 5-5.

Windows

1 Locate the MCRInstaller utility in the
<matlabroot>\toolbox\compiler\deploy\win32 directory and copy it to a
new directory on your machine. Run the utility to start the installation.

MCRInstaller.exe

The MCRInstaller opens a command window and begins preparation for the
installation.
2

Working with the MCR
2 When the MATLAB Component Runtime startup screen appears, click
Next to begin the installation.

3 The setup wizard starts. Click Next to continue.

4 The Select Installation Folder dialog lets you choose where you want to
install the MCR. This dialog also lets you view available and required disk
space on your system. You can also choose whether you want to install the
MCR for just yourself or others. Select your options, and then click Next to
continue.
3-13

3 Compilation Process

3-1
5 Confirm your selections by clicking Next.

The installation begins. The process takes some time due to the quantity of
files that are installed.

6 When the installation completes, click Close on the Installation Completed
dialog to exit.

Note The Install MATLAB Component Runtime for yourself, or for
anyone who uses this computer option is not implemented for this release.
The current default is Everyone.

Linux

1 Locate the MCRInstaller.zip file and copy it to a new directory on your
machine. This new directory will become the installation directory for your
Compiler-generated components. To install the MCR, unzip
MCRInstaller.zip.
4

Working with the MCR
2 Update your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<mcr_root>/runtime/glnx86:
<mcr_root>/sys/os/glnx86:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<mcr_root>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults
3-15

3 Compilation Process

3-1
6

4

Working with mcc

This chapter describes mcc, which is the command that invokes the MATLAB Compiler.

“Command Overview” on page 4-2 Details on using the mcc command

“Using Macros to Simplify
Compilation” on page 4-4

Information on macros and how they can simplify your
work

“Using Pathnames” on page 4-6 Specifying pathnames

“Using Bundle Files” on page 4-7 How to use bundle files to replace sequences of commands

“Using Wrapper Files” on page 4-10 Details on wrapper files

Interfacing M-Code to C/C++ Code
(p. 4-13)

Calling C/C++ functions from M-code

Using Pragmas (p. 4-16) Using %#function

Script Files (p. 4-17) Using scripts in applications

4 Working with mcc

4-2
Command Overview
mcc is the MATLAB command that invokes the MATLAB Compiler. You can
issue the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (stand-alone mode).

Compiler Options
You may specify one or more MATLAB Compiler option flags to mcc. Most
option flags have a one-letter name. You can list options separately on the
command line, for example,

mcc -m -g myfun

Macros are MathWorks supplied Compiler options that simplify the more
common compilation tasks. Instead of manually grouping several options
together to perform a particular type of compilation, you can use a simple
macro option. You can always use individual options to customize the
compilation process to satisfy your particular needs. For more information on
macros, see “Using Macros to Simplify Compilation” on page 4-4.

Combining Options
You can group options that do not take arguments by preceding the list of
option flags with a single dash (-), for example:

mcc -mg myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid.

mcc -v -W main -T link:exe myfun % Options listed separately
mcc -vW main -T link:exe myfun % Options combined

This format is not valid.

mcc -Wv main -T link:exe myfun

In cases where you have more than one option that takes arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

If you include any C or C++ filenames on the mcc command line, the files are
passed directly to mbuild, along with any Compiler-generated C or C++ files.

Command Overview
Conflicting Options on Command Line
If you use conflicting options, the Compiler resolves them from left to right,
with the rightmost option taking precedence. For example, using the
equivalencies in Table 4-1, Macro Options, on page 4-4,

mcc -m -W none test.m

is equivalent to

mcc -W main -T link:exe -W none test.m

In this example, there are two conflicting -W options. After working from left to
right, the Compiler determines that the rightmost option takes precedence,
namely, -W none, and the Compiler does not generate a wrapper.

Note Macros and regular options may both affect the same settings and may
therefore override each other depending on their order in the command line.

Setting Up Default Options
If you have some command line options that you wish always to pass to mcc,
you can do so by setting up an mccstartup file. Create a text file containing the
desired command line options and name the file mccstartup. Place this file in
one of two directories:

• The current working directory, or

• Your preferences directory ($HOME/.matlab/R14 on UNIX,
<system root>\profiles\<user>\application data\mathworks\matlab\
R14 on Windows)

mcc searches for the mccstartup file in these two directories in the order shown
above. If it finds an mccstartup file, it reads it and processes the options within
the file as if they had appeared on the mcc command line before any actual
command line options. Both the mccstartup file and the -B option are
processed the same way.
4-3

4 Working with mcc

4-4
Using Macros to Simplify Compilation
The MATLAB Compiler, through its exhaustive set of options, gives you access
to the tools you need to do your job. If you want a simplified approach to
compilation, you can use one simple option, i.e., macro, that allows you to
quickly accomplish basic compilation tasks. Macros let you group several
options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a
standard compilation and the multioption alternative.

Understanding a Macro Option
The -m option tells the Compiler to produce a stand-alone C application. The -m
macro is equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information
that they provide to the Compiler.

Table 4-1: Macro Options

Macro
Option

Bundle File Creates Option Equivalence

Function Wrapper
| Output Stage
| |

-l macro_option_l Library -W lib -T link:lib

-m macro_option_m Stand-alone C application -W main -T link:exe

Table 4-2: The -m Macro

Option Function

-W main Produce a wrapper file suitable for a stand-alone
application.

-T link:exe Create an executable as the output.

Using Macros to Simplify Compilation
Changing Macro Options
You can change the meaning of a macro option by editing the corresponding
macro_option file bundle file in <matlabroot>/toolbox/compiler/bundles.
For example, to change the -m macro, edit the file macro_option_m in the
bundles directory.
4-5

4 Working with mcc

4-6
Using Pathnames
If you specify a full pathname to an M-file on the mcc command line, the
MATLAB Compiler

1 Breaks the full name into the corresponding pathname and filenames
(<path> and <file>).

2 Replaces the full pathname in the argument list with “-I <path> <file>”.
For example,

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For
example, suppose you have two different M-files that are both named myfile.m
and they reside in /home/user/dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The Compiler finds the myfile.m in dir1 and compiles it instead of the one in
dir2 because of the behavior of the -I option. If you are concerned that this
might be happening, you can specify the -v option and then see which M-file
the Compiler parses. The -v option prints the full pathname to the M-file
during the dependency analysis phase.

Note The Compiler produces a warning (specified_file_mismatch) if a file
with a full pathname is included on the command line and it finds it
somewhere else.

Using Bundle Files
Using Bundle Files
Bundle files provide a convenient way to group sets of MATLAB Compiler
options and recall them as needed. The syntax of the bundle file option is

-B <filename>[:<a1>,<a2>,...,<an>]

When used on the mcc command line, the bundle option -B replaces the entire
string with the contents of the specified file. The file should contain only mcc
command line options and corresponding arguments and/or other filenames.
The file may contain other -B options.

A bundle file can include replacement parameters for Compiler options that
accept names and version numbers. For example, there is a bundle file for C
shared libraries, csharedlib, that consists of

-W lib:%1% -T link:lib

To invoke the Compiler to produce a C shared library using this bundle, you
could use

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle file will be replaced with the corresponding
option specified to the bundle file. Use %% to include a % character. It is an error
to pass too many or too few options to the bundle file.

You can place options that you always set in an mccstartup file. For more
information, see “Setting Up Default Options” on page 4-3.
4-7

4 Working with mcc

4-8
Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then the
quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' weekday data tic calendar toc

This table shows the available bundle files.

Bundle
File Name

Creates Contents

ccom COM Object -W com:<component_name>,<class_name>,<version>
-T link:lib

cexcel Excel COM
Object

-W excel:<component_name>,<class_name>,<version>
-T link:lib -b

cppcom COM Object
(same as
ccom)

-B ccom:<component_name>,<class_name>,<version>

cppexcel Excel COM
Object (same
as cexcel)

-B cexcel:<component_name>,<class_name>,
<version>

cpplib C++ Library -B csharedlib:<shared_library_name>
-T compile:lib

csharedlib C Shared
Library

-W lib:<shared_library_name> -T link:lib

Using Bundle Files
Note To create COM components with the MATLAB Compiler, you must
have the MATLAB Builder for COM product installed on your system. To
create Microsoft Excel Builder components with the MATLAB Compiler, you
must have the MATLAB Builder for Excel product installed on your system.

macro_option_l N/A -W lib -T link:lib

macro_option_m N/A -W main -T link:exe

Bundle
File Name

Creates Contents
4-9

4 Working with mcc

4-1
Using Wrapper Files
Wrapper files, which contain wrapper functions, create a link between the
MATLAB Compiler-generated code and a supported executable type such as
stand-alone executable (main) or library by providing the required interface
that allows the code to operate in the desired execution environment.

To provide the required interface, the wrapper

• Performs wrapper-specific initialization and termination

• Provides the dispatching of function calls to the MCR

To specify the type of wrapper to generate, use the syntax

-W <type>

The following sections detail the available wrapper types.

Main File Wrapper
The -W main option generates wrappers that are suitable for building
stand-alone applications. These POSIX-compliant main wrappers accept
strings from the POSIX shell and return a status code. They pass these
command line strings to the M-file function(s) as MATLAB strings. They are
meant to translate “command-like” M-files into POSIX main applications.

POSIX Main Wrapper
Consider this M-file, sample.m.

function y = sample(varargin)
varargin{:}
y = 0;

You can compile sample.m into a POSIX main application. If you call sample
from MATLAB, you get

sample hello world

ans =
hello

ans =
world
0

Using Wrapper Files
ans =
0

If you compile sample.m and call it from the DOS shell, you get

C:\> sample hello world

ans =
hello

ans =
world

C:\>

The difference between the MATLAB and DOS/UNIX environments is the
handling of the return value. In MATLAB, the return value is handled by
printing its value; in the DOS/UNIX shell, the return value is handled as the
return status code. When you compile a function into a POSIX main
application, the first return value from the function is coerced to a scalar and
is returned to the POSIX shell.

C Library Wrapper
The -l option, or its equivalent -W lib:libname, produces a C library wrapper
file. This option produces a shared library from an arbitrary set of M-files. The
generated header file contains a C function declaration for each of the compiled
M-functions. The export list contains the set of symbols that are exported from
a C shared library.

Note You must generate a library wrapper file when calling any
Compiler-generated code from a larger application.
4-11

4 Working with mcc

4-1
C++ Library Wrapper
The -W cpplib:libname option produces the C++ library wrapper file. This
option allows the inclusion of an arbitrary set of M-files into a library. The
generated header file contains all of the entry points for all of the compiled
M-functions.

Note You must generate a library wrapper file when calling any
Compiler-generated code from a larger application.

COM Component Wrapper
The COM component wrapper file allows you to create COM components from
MATLAB M-files. The options that generate COM wrappers are

-W com:<component_name>[,<class_name>[,<major>.<minor>]]
-W excel:<component_name>[,<class_name>[,<major>.<minor>]]

The COM wrapper options create a superset of the files created when
producing a C or C++ library wrapper.
2

Interfacing M-Code to C/C++ Code
Interfacing M-Code to C/C++ Code
The MATLAB Compiler supports calling arbitrary C/C++ functions from your
M-code. You simply provide an M-function stub that determines how the code
will behave in M, and then provide an implementation of the body of the
function in C or C++.

C Example
Suppose you have a C function that reads data from a measurement device. In
M-code, you want to simulate the device by providing a sine wave output. In
production, you want to provide a function that returns the measurement
obtained from the device. You have a C function called
measure_from_device() that returns a double, which is the current
measurement.

collect.m contains the M-code for the simulation of your application.

function collect

y = zeros(1, 100); %Preallocate the matrix
for i = 1:100
 y(i) = collect_one;
end

function y = collect_one

persistent t;
if (isempty(t))

t = 0;
end
t = t + 0.05;
y = sin(t);

The next step is to replace the implementation of the collect_one function
with a C implementation that provides the correct value from the device each
time it is requested. This is accomplished by using the %#external pragma.

The %#external pragma informs the MATLAB Compiler that the function will
be hand written and will not be generated from the M-code. This pragma
affects only the single function in which it appears. Any M-function may
contain this pragma (local, global, private, or method). When using this
4-13

4 Working with mcc

4-1
pragma, the Compiler will generate an additional header file called
fcn_external.h, where fcn is the name of the initial M-function containing
the %#external pragma. This header file will contain the extern declaration of
the function that you must provide. This function must conform to the same
interface as the Compiler-generated code.

The Compiler will generate the interface for any functions that contain the
%#external pragma into a separate file called fcn_external.h. The
Compiler-generated C or C++ file will include this header file to get the
declaration of the function being provided.

In this example, place the pragma in the collect_one local function.

function collect

y = zeros(1, 100); % preallocate the matrix
for i = 1:100

y(i) = collect_one;
end

function y = collect_one

%#external
persistent t;
if (isempty(t))

t = 0;
end
t = t + 0.05;
end
y = sin(t);

When this file is compiled, the Compiler creates the additional header file
collect_one_external.h, which contains the interface between the
Compiler-generated code and your code. In this example, it would contain

extern void collect_one(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[]);

We recommend that you include this header file when defining the function.
This function could be implemented in this C file, measure.c, using the
measure_from_device() function.

#include "collect_one_external.h"
4

Interfacing M-Code to C/C++ Code
#include <math.h>

extern double measure_from_device(void);

void collect_one(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[]);

{
plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[0])) = measure_from_device()

}

double measure_from_device(void)
{

static double t = 0.0;
t = t + 0.05;
return sin(t);

}

In general, the Compiler will use the same interface for this function as it
would generate. To generate the application, use

mcc -m collect.m measure.c
4-15

4 Working with mcc

4-1
Using Pragmas

Using feval
In stand-alone C and C++ modes, the pragma

%#function <function_name-list>

informs the MATLAB Compiler that the specified function(s) should be
included in the compilation, whether or not the Compiler’s dependency
analysis detects it. Without this pragma, the Compiler’s dependency analysis
will not be able to locate and compile all M-files used in your application.

You cannot use the %#function pragma to refer to functions that are not
available in M-code.

Example - Using %#function
A good coding technique involves using %#function in your code wherever you
use feval statements. This example shows how to use this technique to help
the Compiler find the appropriate files during compile time, eliminating the
need to include all the files on the command line.

function ret = mywindow(data,fitlerName)
%MYWINDOW Applies the window specified on the data
%

% Get the length of the data
N= length(data);

% List all the possible windows
%#function bartlett, barthannwin, blackman, blackmanharris, ...
bohmanwin, chebwin, flattopwin, gausswin, hamming, hann,...
kaiser, nuttallwin, parzenwin, rectwin, tukeywin, ...
triang window = feval(fitlerName,N);

% Apply the window to the data.
ret = data.*window;
6

Script Files
Script Files

Converting Script M-Files to Function M-Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function M-files

• Script M-files

These two categories of M-files differ in two important respects:

• You can pass arguments to function M-files but not to script M-files.

• Variables used inside function M-files are local to that function; you cannot
access these variables from the MATLAB interpreter’s workspace unless
they are passed back by the function. By contrast, variables used inside
script M-files are shared with the caller’s workspace; you can access these
variables from the MATLAB interpreter command line.

The MATLAB Compiler cannot compile script M-files, however, it can compile
function M-files that call scripts. You may not specify a script M-file explicitly
on the mcc command line, but you may specify function M-files that include
scripts themselves.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the M-file.

For example, consider the script M-file houdini.m.

m = magic(4); % Assign 4x4 magic square to m.
t = m .^ 3; % Cube each element of m.
disp(t); % Display the value of t.

Running this script M-file from a MATLAB session creates variables m and t in
your MATLAB workspace.

The MATLAB Compiler cannot compile houdini.m because houdini.m is a
script. Convert this script M-file into a function M-file by simply adding a
function header line.

function houdini(sz)
m = magic(sz); % Assign magic square to m.
t = m .^ 3; % Cube each element of m.
disp(t) % Display the value of t.
4-17

4 Working with mcc

4-1
The MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running houdini.m no longer creates variables m
and t in the MATLAB workspace. If it is important to have m and t accessible
from the MATLAB workspace, you can change the beginning of the function to

function [m,t] = houdini(sz)

The function now returns the values of m and t to its caller.

Including Script Files in Deployed Applications
Compiled applications consist of two layers of M-files. The top layer is the
interface layer and consists of those functions that are directly accessible from
C or C++.

In stand-alone applications, the interface layer consists of only the main M-file.
In libraries, the interface layer consists of the M-files specified on the mcc
command line.

The second layer of M-files in compiled applications includes those M-files that
are called by the functions in the top layer. You can include scripts in the
second layer, but not in the top layer.
8

5
Stand-Alone Applications

This chapter describes how to use the MATLAB Compiler to code and build stand-alone applications.
You can distribute stand-alone applications to users who do not have MATLAB on their systems.

Introduction (p. 5-2) Overview of using the MATLAB Compiler to build
stand-alone applications

C Stand-Alone Application Target
(p. 5-3)

Examples of using the MATLAB Compiler to generate
and deploy stand-alone C applications

Coding with M-Files Only (p. 5-9) Creating stand-alone applications from M-files

Mixing M-Files and C or C++ (p. 5-11) Creating applications from M-files and C/C++ code

5 Stand-Alone Applications

5-2
Introduction
Suppose you want to create an application that calculates the rank of a large
magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines. An easier way to create this
application is to write it as one or more M-files, taking advantage of the power
of MATLAB and its tools.

You can create MATLAB applications that take advantage of the mathematical
functions of MATLAB, yet do not require that end-users own MATLAB.
Stand-alone applications are a convenient way to package the power of
MATLAB and to distribute a customized application to your users.

The source code for stand-alone C applications consists either entirely of
M-files or some combination of M-files, MEX-files, and C or C++ source code
files.

The MATLAB Compiler takes your M-files and generates C source code
functions that allow your M-files to be invoked from outside of interactive
MATLAB. After compiling this C source code, the resulting object file is linked
with the run-time libraries. A similar process is used to create C++ stand-alone
applications.

You can call MEX-files from Compiler-generated stand-alone applications. The
MEX-files will then be loaded and called by the stand-alone code.

C Stand-Alone Application Target
C Stand-Alone Application Target
This section provides an example that illustrates the complete cycle of
compiling an application and deploying it to a user’s machine.

Magic Square Example
This example takes an M-file, magicsquare.m, and creates a stand-alone C
application, magicsquare.

Compiling the Application

1 Copy the file magicsquare.m from

<matlabroot>/extern/examples/compiler

to your work directory.

2 To compile the M-code, use

mcc -mv magicsquare.m

The -m option tells the MATLAB Compiler (mcc) to generate a C stand-alone
application. The -v option (verbose) displays the compilation steps
throughout the process and helps identify other useful information such as
which third-party compiler is used and what environment variables are
referenced.

This command creates the stand-alone application called magicsquare and
additional files. The Windows platform appends the .exe extension to the
name. See the table in “Stand-Alone Executable” on page 3-6 for the
complete list of files created.
5-3

5 Stand-Alone Applications

5-4
Testing the Application
These steps test your stand-alone application on your development machine.

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it is
likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 Update your dynamic library path as follows:

Windows. Add the following directory to your dynamic library path.

<matlabroot>\bin\win32

Linux. Add the following directories to your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<matlabroot>/bin/glnx86:
<matlabroot>/sys/os/glnx86:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<matlabroot>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults

2 Run the stand-alone application from the system prompt (shell prompt on
UNIX, DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)

C Stand-Alone Application Target
magicsquare 4 (On Linux)

The results are displayed as

ans =
16 2 3 13

 5 11 10 8
 9 7 6 12
 4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler-generated stand-alone to any target
machine that has the same operating system as the machine on which the
application was compiled. For example, if you want to deploy an application to
a Windows machine, you must use the MATLAB Compiler to build the
application on a Windows machine. If you want to deploy the same application
to a Linux machine, you must use the MATLAB Compiler on a Linux machine
and completely rebuild the application. To deploy an application to multiple
platforms requires MATLAB and MATLAB Compiler licenses on all the
desired platforms.

These steps describe how to distribute a stand-alone application:

1 Generate the MATLAB Component Runtime (MCR) library archive on the
development machine. You only need to do this step once per platform. To
generate the MCR library archive, run

buildmcr;

This places the MCRInstaller archive MCRInstaller.zip in the
<matlabroot>/toolbox/compiler/deploy/<arch> directory.

Alternatively, to build the MCRInstaller archive as filename in the path
directory, you can use

buildmcr(path, filename);

To return the full path to the file zipfile, use

zipfile = buildmcr(path, filename);
5-5

5 Stand-Alone Applications

5-6
To build the MCRInstaller archive in the current directory, use

zipfile = buildmcr('.');

2 Gather and package the following files and distribute them to the
deployment machine.

Running the Application
These steps describe the process that end users must follow to install and run
the application on their machines.

Preparing Windows Machines.

1 Install the MCR by running the MCR Installer in a directory. For example,
run MCRInstaller.exe in C:\MCR. For more information on running the
MCR Installer utility, see “Installing the MCR on a Deployment Machine”
on page 3-12.

Component Description

MCRInstaller.zip (Linux) MATLAB Component Runtime library
archive; Platform-dependent file that must
correspond to the end user’s platform

MCRInstaller.exe (Windows) Self-extracting MATLAB
Component Runtime library utility;
Platform-dependent file that must correspond
to the end user’s platform

unzip (Linux) Utility to unzip MCRInstaller.zip
(optional). The target machine must have an
unzip utility installed.

magicsquare.ctf Component Technology File archive;
Platform-dependent file that must correspond
to the end user’s platform

magicsquare Application; magicsquare.exe for Windows

C Stand-Alone Application Target
2 Copy the component and CTF archive to your application root directory, for
example, C:\approot.

3 Add the following directory to your dynamic library path.

<mcr_root>\runtime\win32

Preparing Linux Machines.

1 Unzip and install the MCR library archive (MCRInstaller.zip) on your
deployment machine in a directory, say <mcr_root>. You may choose any
directory for <mcr_root> except <matlabroot> or any directory below
<matlabroot>.

Note This book uses <mcr_root> to refer to the directory where these MCR
library archive files are installed on your machine.

2 Copy the component and CTF archive to your application root directory, for
example, /home/<user>/approot.

3 Update your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<mcr_root>/runtime/glnx86:
<mcr_root>/sys/os/glnx86:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<mcr_root>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults
5-7

5 Stand-Alone Applications

5-8
Note There is a limitation regarding directories on your path. If the target
machine has a MATLAB installation, the <mcr_root> directories must be first
on the path in order to run the deployed application. To run MATLAB, the
matlabroot directories must be first on the path. This restriction only applies
to configurations involving an installed MCR and an installed MATLAB on
the same machine.

Executing the Application.

Run the magicsquare stand-alone application from the system prompt and
provide a number representing the size of the desired magic square, for
example, 4.

magicsquare 4

The results are displayed as:

ans =
16 2 3 13

 5 11 10 8
 9 7 6 12
 4 14 15 1

Coding with M-Files Only
Coding with M-Files Only
One way to create a stand-alone application is to write all the source code in
one or more M-files or MEX-files as in the previous magic square example.
Coding an application in M-files allows you to take advantage of the MATLAB
interactive development environment. Once the M-file version of your program
works properly, compile the code and build it into a stand-alone application.

Example
Consider a simple application whose source code consists of two M-files,
mrank.m and main.m. This example generates C code from your M-files.

mrank.m
mrank.m returns a vector of integers, r. Each element of r represents the rank
of a magic square. For example, after the function completes, r(3) contains the
rank of a 3-by-3 magic square.

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end

In this example, the line r = zeros(n,1) preallocates memory to help the
performance of the MATLAB Compiler.

main.m
main.m contains a “main routine” that calls mrank and then prints the results.

function main
r = mrank(5)

Compiling the Example
To compile these into code that can be built into a stand-alone application,
invoke the MATLAB Compiler.

mcc -m main mrank

The -m option causes the MATLAB Compiler to generate C source code suitable
for stand-alone applications. For example, the MATLAB Compiler generates C
5-9

5 Stand-Alone Applications

5-1
source code files main.c, main_main.c, and mrank.c. main_main.c contains a C
function named main; main.c and mrank.c contain C functions named mlfMain
and mlfMrank.

To build an executable application, you can use mbuild to compile and link
these files. Or, you can automate the entire build process (invoke the MATLAB
Compiler on both M-files, use mbuild to compile the files with your ANSI C
compiler, and link the code) by using the command

mcc -m main mrank

If you need to combine other code with your application (FORTRAN, for
example, a language not supported by the MATLAB Compiler), or if you want
to build a makefile that compiles your application, you can use the command

mcc -mc main mrank

The -c option inhibits invocation of mbuild.
0

Mixing M-Files and C or C++
Mixing M-Files and C or C++
The examples in this section illustrate how to mix M-files and C or C++ source
code files:

• The first example is a simple application that mixes M-files and C code.

• The second example illustrates how to write C code that calls a compiled
M-file.

One way to create a stand-alone application is to code some of it as one or more
function M-files and to code other parts directly in C or C++. To write a
stand-alone application this way, you must know how to

• Call the external C or C++ functions generated by the MATLAB Compiler.

• Handle the results these C or C++ functions return.

Note If you include compiled M-code into a larger application, you must
produce a library wrapper file even if you do not actually create a separate
library. For more information on creating libraries, see Chapter 6, “Libraries.”

Simple Example
This example involves mixing M-files and C code. Consider a simple
application whose source code consists of mrank.m and mrankp.c.

mrank.m
mrank.m contains a function that returns a vector of the ranks of the magic
squares from 1 to n.

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end
5-11

5 Stand-Alone Applications

5-1
The Build Process
The steps needed to build this stand-alone application are

1 Compile the M-code.

2 Generate the library wrapper file.

To perform these steps, use

mcc -W lib:libPkg -T link:exe mrank printmatrix mrankp.c

The MATLAB Compiler generates the following C source code files:

• libPkg.c

• libPkg.ctf
• libPkg.h

• libPkg_mcc_component_data.c

This command invokes mbuild to compile the resulting Compiler-generated
source files with the existing C source file (mrankp.c) and links against the
required libraries.

The MATLAB Compiler provides two different versions of mrankp.c in the
<matlabroot>/extern/examples/compiler directory:

• mrankp.c contains a POSIX-compliant main function. mrankp.c sends its
output to the standard output stream and gathers its input from the
standard input stream.

• mrankwin.c contains a Windows version of mrankp.c.
2

Mixing M-Files and C or C++
Figure 5-1: Mixing M-Files and C Code to Form a Stand-Alone Application

mrank.m

mcc -W lib:libPkg -T link:exe
mrank printmatrix mrankp.c

mrank.c, libPkg.c, libPkg.h

C Compiler

Object File

C Compiler

Object File

Linker

Stand-Alone
C

mrankp.c

• Shaded blocks are user-written code.

• Shadowed blocks are tools/libraries.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted blocks are C/C++
compiler-generated code.

mbuild does
this part.

MATLAB Component Runtime

mcc does
this part.
5-13

5 Stand-Alone Applications

5-1
mrankp.c
The code in mrankp.c calls mrank and outputs the values that mrank returns.

/*
 * MRANKP.C
 * "Posix" C main program
 * Calls mlfMrank, obtained by using MCC to compile mrank.m.
 *
 * $Revision: 1.3.16.2 $
 *
 */

#include <stdio.h>
#include <math.h>
#include "libPkg.h"

main(int argc, char **argv)
{
 mxArray *N; /* Matrix containing n. */
 mxArray *R = NULL; /* Result matrix. */
 int n; /* Integer parameter from command line. */

 /* Get any command line parameter. */
 if (argc >= 2) {
 n = atoi(argv[1]);
 } else {
 n = 12;
 }
 mclInitializeApplication(NULL,0);
 libPkgInitialize();/* Initialize the library of M-Functions */

 /* Create a 1-by-1 matrix containing n. */
 N = mxCreateScalarDouble(n);

 /* Call mlfMrank, the compiled version of mrank.m. */
 mlfMrank(1, &R, N);

 /* Print the results. */
 mlfPrintmatrix(R);

4

Mixing M-Files and C or C++
 /* Free the matrices allocated during this computation. */
 mxDestroyArray(N);
 mxDestroyArray(R);

 libPkgTerminate(); /* Terminate the library of M-functions */
 mclTerminateApplication();
}

An Explanation of mrankp.c
The heart of mrankp.c is a call to the mlfMrank function. Most of what comes
before this call is code that creates an input argument to mlfMrank. Most of
what comes after this call is code that displays the vector that mlfMrank
returns. First, the code must initialize the MCR and the generated libPkg
library.

mclInitializeApplication(NULL,0);
libPkgInitialize(); /* Initialize the library of M-Functions */

To understand how to call mlfMrank, examine its C function header, which is

void mlfMrank(int nargout, mxArray** r, mxArray* n);

According to the function header, mlfMrank expects one input parameter and
returns one value. All input and output parameters are pointers to the mxArray
data type. (See the External Interfaces documentation for details on the
mxArray data type.)

To create and manipulate mxArray * variables in your C code, you can call the
mx routines described in the External Interfaces documentation. For example,
to create a 1-by-1 mxArray * variable named N with real data, mrankp calls
mxCreateScalarDouble.

N = mxCreateScalarDouble(n);

mrankp can now call mlfMrank, passing the initialized N as the sole input
argument.

R = mlfMrank(1,&R,N);

mlfMrank returns its output in a newly allocated mxArray * variable named R.
The variable R is initialized to NULL. Output variables that have not been
assigned to a valid mxArray should be set to NULL. The easiest way to display
the contents of R is to call the mlfPrintmatrix function:
5-15

5 Stand-Alone Applications

5-1
mlfPrintmatrix(R);

This function is defined in Printmatrix.m.

Finally, mrankp must free the heap memory allocated to hold matrices and call
the termination functions.

mxDestroyArray(N);
mxDestroyArray(R);
libPkgTerminate(); /* Terminate the library of M-functions */
mclTerminateApplication(); /* Terminate the MCR */

Advanced C Example
This section illustrates an advanced example of how to write C code that calls
a compiled M-file. Consider a stand-alone application whose source code
consists of two files:

• multarg.m, which contains a function named multarg

• multargp.c, which contains a C function named main

multarg.m specifies two input parameters and returns two output parameters.

function [a,b] = multarg(x,y)
a = (x + y) * pi;
b = svd(svd(a));

The code in multargp.c calls mlfMultarg and then displays the two values that
mlfMultarg returns.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "libMultpkg.h"

/*
 * Function prototype; the MATLAB Compiler creates mlfMultarg
 * from multarg.m
 */

void PrintHandler(const char *text)
{
 printf(text);
6

Mixing M-Files and C or C++
}

int main() /* Programmer written coded to call mlfMultarg */
{
#define ROWS 3
#define COLS 3
 mclOutputHandlerFcn PrintHandler;
 mxArray *a = NULL, *b = NULL, *x, *y;
 double x_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double x_pi[ROWS * COLS] = {9, 2, 3, 4, 5, 6, 7, 8, 1};
 double y_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double y_pi[ROWS * COLS] = {2, 9, 3, 4, 5, 6, 7, 1, 8};
 double *a_pr, *a_pi, value_of_scalar_b;

 /* Initialize with a print handler to tell mlfPrintMatrix
 * how to display its output.
 */
 mclInitializeApplication(NULL,0);
 libMultpkgInitializeWithHandlers(PrintHandler, PrintHandler);

 /* Create input matrix "x" */
 x = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(x), x_pi, ROWS * COLS * sizeof(double));

 /* Create input matrix "y" */
 y = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(y), y_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

 /* Call the mlfMultarg function. */
 mlfMultarg(2, &a, &b, x, y);

 /* Display the entire contents of output matrix "a". */
 mlfPrintmatrix(a);

 /* Display the entire contents of output scalar "b" */
 mlfPrintmatrix(b);

5-17

5 Stand-Alone Applications

5-1
 /* Deallocate temporary matrices. */
 mxDestroyArray(a);
 mxDestroyArray(b);
 libMultpkgTerminate();
 mclTerminateApplication();
 return(0);
}

You can build this program into a stand-alone application by using the
command

mcc -W lib:libMultpkg -T link:exe multarg printmatrix multargp.c

The program first displays the contents of a 3-by-3 matrix a and then displays
the contents of scalar b.

 6.2832 +34.5575i 25.1327 +25.1327i 43.9823 +43.9823i
 12.5664 +34.5575i 31.4159 +31.4159i 50.2655 +28.2743i
 18.8496 +18.8496i 37.6991 +37.6991i 56.5487 +28.2743i

 143.4164

An Explanation of This C Code
Invoking the MATLAB Compiler on multarg.m generates the C function
prototype.

extern void mlfMultarg(int nargout, mxArray** a, mxArray** b,
mxArray* x, mxArray* y);

This C function header shows two input arguments (mxArray* x and
mxArray* y) and two output arguments (the return value and mxArray** b).

Use mxCreateDoubleMatrix to create the two input matrices (x and y). Both x
and y contain real and imaginary components. The memcpy function initializes
the components, for example:

x = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(y), x_pi, ROWS * COLS * sizeof(double));

The code in this example initializes variable x from two arrays (x_pr and x_pi)
of predefined constants. A more realistic example would read the array values
from a data file or a database.
8

Mixing M-Files and C or C++
After creating the input matrices, main calls mlfMultarg.

mlfMultarg(2, &a, &b, x, y);

The mlfMultarg function returns matrices a and b. a has both real and
imaginary components; b is a scalar having only a real component. The
program uses mlfPrintmatrix to output the matrices, for example:

mlfPrintmatrix(a);
5-19

5 Stand-Alone Applications

5-2
0

6
Libraries

This chapter describes how to use the MATLAB Compiler to create libraries.

Introduction (p. 6-2) Overview of shared libraries

C Shared Library Target (p. 6-3) Creating and distributing C shared libraries

C++ Shared Library Target (p. 6-14) Creating and distributing C++ shared libraries

MATLAB Compiler-Generated
Interface Functions (p. 6-19)

Interface functions

6 Libraries

6-2
Introduction
You can use the MATLAB Compiler to create C or C++ shared libraries (DLLs
on Windows) from your MATLAB algorithms. You can then write C or C++
programs that can call the MATLAB functions in the shared library, much like
calling the functions from the MATLAB command line.

C Shared Library Target
C Shared Library Target
You can use the MATLAB Compiler to build C or C++ shared libraries on both
Windows and Linux. Many of the mcc options that pertain to creating
stand-alone applications also pertain to creating C and C++ shared libraries.

C Shared Library Wrapper
The C library wrapper option allows you to create a shared library from an
arbitrary set of M-files. The MATLAB Compiler generates a wrapper file, a
header file, and an export list. The header file contains all of the entry points
for all of the compiled M-functions. The export list contains the set of symbols
that are exported from a C shared library.

Note Even if you are not producing a shared library, you must use -W lib or
-W cpplib when including any Compiler-generated code into a larger
application. For more information, refer to “Mixing M-Files and C or C++” on
page 5-11.

C Shared Library Example
This example takes several M-files and creates a C shared library. It also
includes a stand-alone driver application to call the shared library.

Building the Shared Library

1 Copy the following files from <matlabroot>/extern/examples/compiler to
your work directory.

<matlabroot>/extern/examples/compiler/addmatrix.m
<matlabroot>/extern/examples/compiler/multiplymatrix.m
<matlabroot>/extern/examples/compiler/eigmatrix.m
<matlabroot>/extern/examples/compiler/matrixdriver.c

Note matrixdriver.c contains the stand-alone application’s main function.
6-3

6 Libraries

6-4
2 To create the shared library, use

mcc -B csharedlib:libmatrix addmatrix.m multiplymatrix.m
eigmatrix.m -v

The -B csharedlib option is a bundle option that expands into

-W lib:<libname> -T link:lib

The -W lib:<libname> option tells the MATLAB Compiler to generate a
function wrapper for a shared library and call it libname. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the Compiler puts the shared library because you will need it later on.

Writing the Driver Application
All programs that call MATLAB Compiler-generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets up
the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

5 Call, once for each library, <libraryname>Terminate, to destroy the
associated MCR.

6 Call mclTerminateApplication to free resources associated with the global
MCR state.

7 Clean up variables, close files, etc., and exit.

This example uses matrixdriver.c as the driver application.

C Shared Library Target
Note You must call mclInitializeApplication once at the beginning of
your driver application. You must make this call before calling any other
MathWorks functions. See “Calling a Shared Library” on page 6-9 for
complete details on using a Compiler-generated library in your application.

Compiling the Driver Application
To compile the driver code, matrixdriver.c, you use your C/C++ compiler.
Execute the following mbuild command that corresponds to your development
platform. This command uses your C/C++ compiler to compile the code.

mbuild matrixdriver.c libmatrix.lib (Windows)
mbuild matrixdriver.c -L. -lmatrix -I. (Linux)

Note This command assumes that the shared library and the corresponding
header file created from step 2 are in the current working directory.

On Linux, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

On Windows, if this is not the case, specify the full path to libmatrix.lib.

This generates a stand-alone application, matrixdriver.exe, on Windows, and
matrixdriver, on Linux.

Difference in the Exported Function Signature. The interface to the mlf functions
generated by the Compiler from your M-file routines has changed in this
version of the Compiler. The generic signature of the exported mlf functions is

• M-functions with no return values
void mlf<function-name>(<list_of_input_variables>);

• M-functions with at least one return value
void mlf<function-name>(int number_of_return_values,
<list_of_pointer_to_return_variables>,
<list_of_input_variables>);
6-5

6 Libraries

6-6
Refer to the header file generated for your library for the exact signature of the
exported function. For example, in the library created in the previous section,
the signature of the exported addmatrix function is

void mlfAddmatrix(int nlhs,mxArray **a,mxArray *a1,mxArray *a2);

Testing the Driver Application
These steps test your stand-alone driver application and shared library on your
development machine.

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it is
likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 To run the stand-alone application, add the directory containing the shared
library that was created in step 2 in “Building the Shared Library” on
page 6-3 to your dynamic library path.

2 Update your dynamic library path as follows:

Windows. Add the following directory to your dynamic library path.

<matlabroot>\bin\win32

Linux. Add the following directories to your dynamic library path.

Note For readability, the following command appears on separate lines, but
you must enter it all on one line.

setenv LD_LIBRARY_PATH
<matlabroot>/bin/glnx86:

C Shared Library Target
<matlabroot>/sys/os/glnx86:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
<matlabroot>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
<matlabroot>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

setenv XAPPLRESDIR <matlabroot>/X11/app-defaults

3 Run the driver application from the prompt (DOS prompt on Windows, shell
prompt on Linux) by typing the application name.

matrixdriver.exe (On Windows)
matrixdriver (On Linux)

The results are displayed as:

The value of the added matrix is:
2.00 4.00 6.00
8.00 10.00 12.00
14.00 16.00 18.00

The value of the multiplied matrix is:
30.00 36.00 42.00
66.00 81.00 96.00
102.00 126.00 150.00

The eigenvalue of the first matrix is:
16.12 -1.12 -0.00
6-7

6 Libraries

6-8
Deploying Stand-Alone Applications That Call MATLAB Compiler-Based
Shared Libraries
Gather and package the following files and distribute them to the deployment
machine.

Note You can distribute a MATLAB Compiler-generated stand-alone
application to any target machine that has the same operating system as the
machine on which the application was compiled. If you want to deploy the
same application to a different platform, you must use the MATLAB Compiler
on the different platform and completely rebuild the application.

Component Description

MCRInstaller.zip (Linux) MATLAB Component Runtime library
archive; platform-dependent file that must
correspond to the end user’s platform

MCRInstaller.exe (Windows) Self-extracting MATLAB
Component Runtime library utility;
platform-dependent file that must correspond
to the end user’s platform

unzip (Linux) Utility to unzip MCRInstaller.zip
(optional). The target machine must have an
unzip utility installed.

matrixdriver.ctf Component Technology File archive;
platform-dependent file that must correspond
to the end user’s platform

matrixdriver Application; matrixdriver.exe for Windows

libmatrix Shared library; extension varies by platform,
for example, DLL on Windows

C Shared Library Target
Deploying Shared Libraries to be Used with Other Projects
To distribute the shared library for use with an external application, you need
to distribute the following.

Calling a Shared Library
At run-time, there is an MCR instance associated with each individual shared
library. Consequently, if an application links against two MATLAB
Compiler-generated shared libraries, there will be two MCR instances created
at run-time.

You can control the behavior of each MCR instance by using MCR options. The
two classes of MCR options are global and local. Global MCR options are
identical for each MCR instance in an application. Local MCR options may
differ for MCR instances.

To use a shared library, you must use these functions:

Component Description

MCRInstaller.zip (Linux) MATLAB Component Runtime library
archive; platform-dependent file that must
correspond to the end user’s platform

MCRInstaller.exe (Windows) Self-extracting MATLAB
Component Runtime library utility;
platform-dependent file that must correspond
to the end user’s platform

unzip (Linux) Utility to unzip MCRInstaller.zip
(optional). The target machine must have an
unzip utility installed.

libmatrix.ctf Component Technology File archive;
platform-dependent file that must correspond
to the end user’s platform

libmatrix Shared library; extension varies by platform,
for example, DLL on Windows

libmatrix.h Library header file
6-9

6 Libraries

6-1
• mclInitializeApplication
• mclTerminateApplication

mclInitializeApplication allows you to set the global MCR options. They
apply equally to all MCR instances. You must set these options before creating
your first MCR instance.

These functions are necessary because some MCR options such as whether or
not to start Java, the location of the MCR itself, whether or not to use the
MATLAB JIT feature, and so on, are set when the first MCR instance starts
and cannot be changed by subsequent instances of the MCR.

Note You must call mclInitializeApplication once at the beginning of
your driver application. You must make this call before calling any other
MathWorks functions.

Function Signatures
The function signatures are

bool mclInitializeApplication(const char **options, int count);
bool mclTerminateApplication(void);

mclInitializeApplication. Takes an array of strings of user-settable options (these
are the very same options that can be provided to mcc via the -R option) and a
count of the number of options (the length of the option array). Returns true
for success and false for failure.

mclTerminateApplication. Takes no arguments and can only be called after all
MCR instances have been destroyed. Returns true for success and false for
failure.

Note After you call mclTerminateApplication, you may not call
mclInitializeApplication again. No MathWorks functions may be called
after mclTerminateApplication.

This C example shows typical usage of the functions.
0

C Shared Library Target
int main(){

 mxArray *in1, *in2; /* Define input parameters */
 mxArray *out = NULL;/* and output parameters to be passed to

the library functions */

 double data[] = {1,2,3,4,5,6,7,8,9};

 /* Call the library intialization routine and make sure that

the library was initialized properly */
 mclInitializeApplication(NULL,0);
 if (!libmatrixInitialize()){
 fprintf(stderr,"could not initialize the library

properly\n");
 return -1;
 }

 /* Create the input data */
 in1 = mxCreateDoubleMatrix(3,3,mxREAL);
 in2 = mxCreateDoubleMatrix(3,3,mxREAL);
 memcpy(mxGetPr(in1), data, 9*sizeof(double));
 memcpy(mxGetPr(in2), data, 9*sizeof(double));

 /* Call the library function */
 mlfAddmatrix(1, &out, in1, in2);
 /* Display the return value of the library function */
 printf("The value of added matrix is:\n");
 display(out);
 /* Destroy the return value since this variable will be reused

in the next function call. Since we are going to reuse the
variable, we have to set it to NULL. Refer to MATLAB
Compiler documentation for more information on this. */

 mxDestroyArray(out); out=0;
 mlfMultiplymatrix(1, &out, in1, in2);
 printf("The value of the multiplied matrix is:\n");
 display(out);
 mxDestroyArray(out); out=0;
 mlfEigmatrix(1, &out, in1);
 printf("The Eigen value of the first matrix is:\n");
 display(out);
6-11

6 Libraries

6-1
 mxDestroyArray(out); out=0;

 /* Call the library termination routine */
 libmatrixTerminate();

 /* Free the memory created */
 mxDestroyArray(in1); in1=0;
 mxDestroyArray(in2); in2 = 0;
 mclTerminateApplication();
 return 1;
}

Note mclInitializeApplication can only be called once per application.
Calling it a second time is an error, and will cause the function to return
false. This function must be called before calling any C MX-function or
MAT-file API function.

Steps to Use a Shared Library
To use a MATLAB Compiler-generated shared library in your application, you
must perform the following steps:

1 Include the generated header file for each library in your application. Each
MATLAB Compiler-generated shared library has an associated header file
named <lib-name>.h, where <lib-name> is the library’s name that was
passed in on the command line when the library was compiled.

2 Initialize the MATLAB libraries by calling the mclInitializeApplication
API function. You must call this function once per application, and it must
be called before calling any other MATLAB API functions, such as C
MX-functions or C MAT-file functions. mclInitializeApplication must be
called before calling any functions in a MATLAB Compiler-generated shared
library. You may optionally pass in application-level options to this function.
mclInitializeApplication returns a Boolean status code. A return value
of true indicates successful initialization, and false indicates failure.

3 For each MATLAB Compiler-generated shared library that you include in
your application, call the library’s initialization function. This function
2

C Shared Library Target
performs several library-local initializations, such as unpacking the CTF
archive, and starting an MCR instance with the necessary information to
execute the code in that archive. The library initialization function will be
named <lib-name>Initialize(), where <lib-name> is the library’s name
that was passed in on the command line when the library was compiled. This
function returns a Boolean status code. A return value of true indicates
successful initialization, and false indicates failure.

4 Call the exported functions of each library as needed. Use the C MX API to
process input and output arguments for these functions.

5 When your application no longer needs a given library, call the library’s
termination function. This function frees the resources associated with its
MCR instance. The library termination function will be named
<lib-name>Terminate(), where <lib-name> is the library’s name that was
passed in on the command line when the library was compiled. Once a
library has been terminated, that library’s exported functions should not be
called again in the application.

6 When your application no longer needs to call any MATLAB
Compiler-generated libraries, call the mclTerminateApplication API
function. This function frees application-level resources used by the MCR.
Once you call this function, no further calls can be made to MATLAB
Compiler-generated libraries in the application.
6-13

6 Libraries

6-1
C++ Shared Library Target

C++ Shared Library Wrapper
The C++ library wrapper option allows you to create a shared library from an
arbitrary set of M-files. The MATLAB Compiler generates a wrapper file and a
header file. The header file contains all of the entry points for all of the
compiled M-functions.

Note Even if you are not producing a shared library, you must use -W lib or
-W cpplib when including any Compiler-generated code into a larger
application. For more information, refer to “Mixing M-Files and C or C++” on
page 5-11.

C++ Shared Library Example
This example rewrites the previous C shared library example using C++. The
procedure for creating a C++ shared library from M-files is identical to the
procedure for creating a C shared library, except you use the cpplib wrapper.

mcc W cpplib:libmatrix T link:lib addmatrix.m multiplymatrix.m
eigmatrix.m -v

The W cpplib:<libname> option tells the MATLAB Compiler to generate a
function wrapper for a shared library and call it <libname>. The T link:lib
option specifies the target output as a shared library. Note the directory where
the Compiler puts the shared library because you will need it later on.

Writing the Driver Application
This example uses a C++ version of the matrixdriver application,
matrixdriver.cpp.

/*==
 *
 * MATRIXDRIVER.CPP
 * Sample driver code that calls a C++ shared library created using
 * the MATLAB Compiler. Refer to the MATLAB Compiler documentation
 * for more information on this
 *
4

C++ Shared Library Target
 * This is the wrapper CPP code to call a shared library created
 * using the MATLAB Compiler.
 *
 * Copyright 1984-2004 The MathWorks, Inc.
 *
 ==/

// Include the library specific header file as generated by the
// MATLAB Compiler
#include "libmatrix.h"

int main(){

 // Call application and library initialization. Perform this
 // initialization before calling any API functions or

// Compiler-generated libraries.
 if (!mclInitializeApplication(NULL,0) ||

!libmatrixInitialize())
 {
 std::cerr << "could not initialize the library properly"
 << std::endl;
 return -1;
 }

 try
 {
 // Create input data
 double data[] = {1,2,3,4,5,6,7,8,9};
 mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);
 mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
 in1.SetData(data, 9);
 in2.SetData(data, 9);

 // Create output array
 mwArray out;

 // Call the library function
 addmatrix(1, out, in1, in2);
6-15

6 Libraries

6-1
 // Display the return value of the library function
 std::cout << "The value of added matrix is:" << std::endl;
 std::cout << out << std::endl;

 multiplymatrix(1, out, in1, in2);
std::cout << "The value of the multiplied matrix is:"

<< std::endl;
 std::cout << out << std::endl;

 eigmatrix(1, out, in1);
 std::cout << "The eigenvalues of the first matrix are:"
 << std::endl;
 std::cout << out << std::endl;
 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 return -1;
 }
 catch (...)
 {
 std::cerr << "Unexpected error thrown" << std::endl;
 return -1;
 }

 // Call the application and library termination routine
 libmatrixTerminate();
 mclTerminateApplication();

 return 0;
}

Compiling the Driver Application
To compile the matrixdriver.cpp driver code, you use your C++ compiler. By
executing the following mbuild command that corresponds to you development
platform, you will use your C++ compiler to compile the code.

mbuild matrixdriver.cpp libmatrix.lib (Windows)
mbuild matrixdriver.cpp L. lmatrix I. (Linux)
6

C++ Shared Library Target
Incorporating a C++ Shared Library Into an Application
To incorporate a C++ shared library into your application, you will, in general,
follow the steps listed in “Steps to Use a Shared Library” on page 6-12. There
are two main differences to note when using a C++ shared library.

• Interface functions use the mwArray type to pass arguments, rather than the
mxArray type used with C shared libraries.

• C++ exceptions are used to report errors to the caller. Therefore, all calls
must be wrapped in a try-catch block.

Exported Function Signature
The C++ shared library target generates two sets of interfaces for each
M-function. The first set of exported interfaces is identical to the mlx
signatures that are generated in C shared libraries. The second set of
interfaces is the C++ function interfaces. The generic signature of the exported
C++ functions is

M-functions with no return values.
void <function-name>(<list_of_input_variables>);

M-functions with at least one return value.
void <function-name>(int number_of_return_values,
 <list_of_return_variables>, <list_of_input_variables>);

In this case, <list_of_input_variables> represents a comma-separated list
of type const mwArray& and <list_of_return_variables> represents a
comma-separated list of type mwArray&. For example, in the libmatrix library,
the C++ interfaces to the addmatrix M-function is generated as

void addmatrix(int nargout, mwArray& a , const mwArray& a1,
 const mwArray& a2);

Error Handling
C++ interface functions handle errors during execution by throwing a C++
exception. Use the mwException class for this purpose. Your application can
catch mwExceptions and query the what() method to get the error message. To
correctly handle errors when calling the C++ interface functions, wrap each
call inside a try-catch block.
6-17

6 Libraries

6-1
try
{

.
(call function)
.

}
catch (const mwException& e)
{

.
(handle error)
.

}

The matrixdriver.cpp application illustrates the typical way to handle errors
when calling the C++ interface functions.
8

MATLAB Compiler-Generated Interface Functions
MATLAB Compiler-Generated Interface Functions
A shared library generated by the MATLAB Compiler contains at least seven
functions. There are three generated functions to manage library initialization
and termination, one each for printed output and error messages, and two
generated functions for each M-file compiled into the library.

To generate the functions described in this section, first copy sierpinski.m
and triangle.c from <matlabroot>/extern/examples/compiler into your
directory, and then execute the appropriate Compiler command.

For a C application

On Windows.

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c libtriangle.lib

On Linux.

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c -L. -ltriangle -I.

For a C++ application

On Windows.

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp libtriangle.lib

On Linux.

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp -L. -ltriangle -I.

These commands create a main program named triangle, and a shared library
named libtriangle. The library exports a single function that uses a simple
iterative algorithm (contained in sierpinski.m) to generate the fractal known
as Sierpinski’s Triangle. The main program in triangle.c or triangle.cpp
can optionally take a single numeric argument, which, if present, specifies the
number of points used to generate the fractal. For example, triangle 8000
generates a diagram with 8,000 points.
6-19

6 Libraries

6-2
In this example the MATLAB Compiler places all of the generated functions
discussed below into the generated file libtriangle.c or libtriangle.cpp.

Structure of Programs that Call Shared Libraries
All programs that call MATLAB Compiler-generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets up
the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)
0

MATLAB Compiler-Generated Interface Functions
5 Call, once for each library, <libraryname>Terminate, to destroy the
associated MCR.

6 Call mclTerminateApplication to free resources associated with the global
MCR state.

7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this
example, triangle.c.

Library Initialization and Termination Functions
The library initialization and termination functions create and destroy,
respectively, the MCR instance required by the shared library. You must call
the initialization function before you invoke any of the other functions in the
shared library, and you should call the termination function after you are
finished making calls into the shared library (or you risk leaking memory).

There are two forms of the initialization function and one type of termination
function. The simpler of the two initialization functions takes no arguments;
most likely this is the version your application will call. In this example, this
form of the initialization function is called libtriangleInitialize.

bool libtriangleInitialize(void)

This function creates an MCR instance using the default print and error
handlers, and other information generated during the compilation process.

However, if you want more control over how printed output and error messages
are handled, you may call the second form of the function, which takes two
arguments.

bool libtriangleInitializeWithHandlers(
 mclOutputHandlerFcn error_handler,
 mclOutputHandlerFcn print_handler
)

By calling this function, you can provide your own versions of the print and
error handling routines called by the MCR. Each of these routines has the same
signature (for complete details, see “Print and Error Handling Functions” on
page 6-22). By overriding the defaults, you can control how output is displayed
and, for example, whether or not it goes into a log file.
6-21

6 Libraries

6-2
Note Before calling either form of the library initialization routine, you must
first call mclInitializeApplication to set up the global MCR state. See
“Calling a Shared Library” on page 6-9 for more information.

On Microsoft Windows platforms, the Compiler generates an additional
initialization function, the standard Microsoft DLL initialization function
DllMain.

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
void *pv)

The generated DllMain performs a very important service; it locates the
directory in which the shared library is stored on disk. This information is used
to find the CTF archive, without which the application will not run. If you
modify the generated DllMain (which we do not recommend you do), make sure
you preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling
mclTerminateApplication.

Print and Error Handling Functions
By default, MATLAB Compiler-generated applications and shared libraries
send printed output to standard output and error messages to standard error.
The Compiler generates a default print handler and a default error handler
that implement this policy. If you’d like to change this behavior, you must write
your own error and print handlers and pass them in to the appropriate
generated initialization function.

You may replace either, both, or neither of these two functions. Note that the
MCR sends all regular output through the print handler and all error output
through the error handler. Therefore, if you redefine either of these functions,
the MCR will use your version of the function for all the output that falls into
class for which it invokes that handler.

The default print handler takes the following form.
2

MATLAB Compiler-Generated Interface Functions
static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard
output, and returns the number of characters printed. If you override or replace
this function, your version must also take a string and return the number of
characters “handled.” The MCR calls the print handler when an executing
M-file makes a request for printed output, e.g., via the MATLAB function disp.
The print handler does not terminate the output with a carriage return or line
feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different.
It sends the output to the standard error output stream, but if the string does
not end with carriage return, the error handler adds one. If you replace the
default error handler with one of your own, you should perform this check as
well, or some of the error messages printed by the MCR will not be properly
formatted.

Note The error handler, despite its name, does not handle the actual errors,
but rather the message produced after the errors have been caught and
handled inside the MCR. You cannot use this function to modify the error
handling behavior of the MCR — use the try and catch statements in your
M-files if you want to control how a MATLAB Compiler-generated application
responds to an error condition.

Functions Generated from M-Files
For each M-file specified on the MATLAB Compiler command line, the
Compiler generates two functions, the mlx function and the mlf function. Each
of these generated functions performs the same action (calls your M-file
function). The two functions have different names and present different
interfaces. The name of each function is based on the name of the first function
in the M-file (sierpinski, in this example); each function begins with a
different three-letter prefix.
6-23

6 Libraries

6-2
mlx Interface Function
The function that begins with the prefix mlx takes the same type and number
of arguments as a MATLAB MEX-function. (See the External Interfaces
documentation for more details on MEX-functions). The first argument, nlhs,
is the number of output arguments, and the second argument, plhs, is a
pointer to an array that the function will fill with the requested number of
return values. (The “lhs” in these argument names is short for “left-hand side”
— the output variables in a MATLAB expression are those on the left-hand side
of the assignment operator.) The third and forth parameters are the number of
inputs and an array containing the input variables.

void mlxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
 mxArray *prhs[])

mlf Interface Function
The second of the generated functions begins with the prefix mlf. This function
expects its input and output arguments to be passed in as individual variables
rather than packed into arrays. If the function is capable of producing one or
more outputs, the first argument is the number of outputs requested by the
caller.

void mlfSierpinski(int nargout, mxArray** x, mxArray** y,
 mxArray* iterations, mxArray* draw)

Note that in both cases, the generated functions allocate memory for their
return values. If you do not delete this memory (via mxDestroyArray) when you
are done with the output variables, your program will leak memory.

Your program may call whichever of these functions is more convenient, as
they both invoke your M-file function in an identical fashion. Most programs
will likely call the mlf form of the function to avoid managing the extra arrays
required by the mlx form. The example program in triangle.c calls
mlfSierpinski.

mlfSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, x and y, and provides
two inputs, iterations and draw.

If the output variables you pass in to an mlf function are nonNULL, the mlf
function will attempt to free them using mxDestroyArray. This means that you
can reuse output variables in consecutive calls to mlf functions without
4

MATLAB Compiler-Generated Interface Functions
worrying about memory leaks. It also implies that you must pass either NULL
or a valid MATLAB array for all output variables or your program will fail
because the memory manager cannot distinguish between a noninitialized
(invalid) array pointer and a valid array. It will try to free a pointer that is not
NULL — freeing an invalid pointer usually causes a segmentation fault or
similar fatal error).

Using varargin and varargout in an M-Function Interface
If your M-function interface uses varargin or varargout, you must pass them
as cell arrays. For example, if you have N varargins, you need to create one cell
array of size 1-by-N. Similarly, varargouts are returned back as one cell array.
The length of the varargout is equal to the number of return values specified
function call minus the number of actual variables passed. As in MATLAB, the
cell array representing varagout has to be the last return variable (the variable
preceding the first input variable) and the cell array representing varargins
has to be the last formal parameter to the function call.

For information on creating cell arrays, refer to the C MX-function interface in
the External Interfaces documentation.

For example, consider this M-file interface.

[a,b,varargout] = myfun(x,y,z,varargin)

The corresponding C interface for this is

void mlfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
mxArray **varargout, mxArray *x, mxArray *y,
mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars - 2),
where 2 represents the two actual variables, a and b, being returned. Both
varargin and varargout are single row, multiple column cell arrays.
6-25

6 Libraries

6-2
6

7

COM and Excel
Components

This chapter describes how to use the MATLAB Compiler to generate COM and Excel components.

Introduction (p. 7-2) Overview of generating COM and Excel components

COM Object Target (p. 7-3) Creating COM components from MATLAB M-files that
can be used in any application that works with COM
objects

Excel Plug-In Target (p. 7-8) Creating COM objects from MATLAB M-files that can be
used as an Excel plug-in

7 COM and Excel Components

7-2
Introduction
This chapter focuses on using two optional MATLAB Compiler-based products:

• MATLAB Builder for COM

• MATLAB Builder for Excel

These products add capabilities to the base MATLAB Compiler; they require
the MATLAB Compiler and must be purchased separately.

Generating COM and Excel Components
To create COM objects or Excel add-ins, you use the MATLAB Builder for COM
or MATLAB Builder for Excel products, respectively, along with the MATLAB
Compiler.

MATLAB Builder for COM
To use the MATLAB Compiler to build COM objects, you must have MATLAB
Builder for COM installed on your development machine. MATLAB Builder for
COM lets you convert MATLAB algorithms to Common Object Model (COM)
objects that are accessible from Visual Basic, C/C++, Microsoft Excel, or any
other COM-based application.

For more information on MATLAB Builder for COM, see the MathWorks Web
site (http://www.mathworks.com/products/combuilder/).

MATLAB Builder for Excel
To use the MATLAB Compiler to build Excel add-ins, you must have MATLAB
Builder for Excel installed on your development machine. MATLAB Builder for
Excel lets you convert MATLAB algorithms into independent Excel add-ins.
MATLAB Builder for Excel generates a Visual Basic Application file (.bas)
from your MATLAB model that you can import into Excel as a stand-alone
function. Users can then call or use their MATLAB based algorithms the same
way as other Excel add-ins.

For more information on MATLAB Builder for Excel, see the MathWorks Web
site (http://www.mathworks.com/products/matlabxl/).

COM Object Target
COM Object Target

Note To create COM components using the MATLAB Compiler, you must
have MATLAB Builder for COM installed on your system. For more
information, see the MATLAB Builder for COM documentation.

With the optional MATLAB Builder for COM product, you can create COM
components that can be used in any application that works with COM objects.

You can use the MATLAB Compiler to create Component Object Model (COM)
objects from MATLAB M-files. The collection of M-files is translated into a
single COM class. MATLAB Builder for COM supports multiple classes per
component.

COM Component Wrapper
The interface to the COM class is the same set of functions that are exported
from a C shared library, but the MATLAB Compiler supports both C and C++
code generation in producing COM objects.

mcc automatically

• Invokes the Microsoft Interface Definition Language (MIDL) Compiler

• Invokes the resource compiler

• Specifies the .DEF files

Using mcc options you can enable auto registration of the COM-compatible
DLL.

Note MATLAB Builder for COM is available on Windows only. The only
compilers that support the building of COM objects with the MATLAB
Compiler are Borland C++Builder (versions 3.0, 4.0, and 5.0) and Microsoft
Visual C/C++ (versions 6.0, 7.0, and 7.1). The Borland C++Builder products
require you to have the MIDL Compiler provided by Microsoft to create COM
objects.
7-3

7 COM and Excel Components

7-4
For example, to compile plus1.m into a COM object, use

mcc -B 'ccom:addin,addin,1.0' plus1.m

COM Components
The COM wrapper file allows you to create COM components from MATLAB
M-files. The Compiler options that generate the COM wrappers are

-W com:<component_name>[,<class_name>[,<major>.<minor>]]
-W excel:<component_name>[,<class_name>[,<major>.<minor>]]

The COM wrapper options create a superset of the files created when
producing a C or C++ library wrapper. In addition to the C or C++ library files,
the COM wrapper creates the files shown in the following table.

If the <class_name> is not specified, it defaults to <component_name>. If the
version number is not specified, it defaults to the latest version built or 1.0, if
there is no previous version.

The COM wrapper option generates all the required code and files to create a
single COM object, which contains all of the compiler-generated interfaces. It
creates a single COM class with the same name as the specified <class_name>
and a corresponding interface class called I<class_name>. It uses the major
and minor version numbers to control the major and minor version numbers of
the generated COM interface.

MATLAB Builder for COM generates a COM interface using C++ rather than
C. This is a requirement of COM and not particular to the MATLAB Compiler.

File Description

<component_name>_idl.idl Interface description file for COM

<component_name>_com.hpp C++ header file for the COM class

<component_name>_com.cpp C++ source file for the COM class

<component_name>_dll.cpp DLL interface for the COM object

<component_name>.def Definition file for the COM DLL

<component_name>.rc Resource file for the COM DLL

COM Object Target
The MATLAB Builder for COM automatically adds all the generated C++
source files to the mcc command line. The details of how the new file types
(.def, .rc, and .idl) are processed are specified in “How mbuild Processes the
File Types” on page 7-5.

If the major and minor version numbers are specified, the Compiler replaces
any existing type library with the specified new version number. If no version
numbers are specified and there is an existing type library, the Compiler
replaces the current version.

The MATLAB Compiler derives the name of the generated COM component
DLL from the component name and version numbers:
<component_name>_<major>_<minor>.dll. This prevents new versions from
conflicting with each other. The user never uses the DLL name. It is not
necessary to specify this name to the system because COM locates component
DLLs using the Window’s registry.

For details on how the MATLAB Compiler processes the ccom bundle file, see
“Using Bundle Files” on page 4-7.

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then the
quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' weekday data tic calendar toc

How mbuild Processes the File Types
The mbuild option, -regsvr, uses the mwregsvr32 program to register the
resulting shared library at the end of compilation. The Compiler uses this
option whenever it produces a COM wrapper file.
7-5

7 COM and Excel Components

7-6
<filename>.idl. You can specify IDL source files on the mbuild command line.
These files are compiled using the MIDL Compiler. The compiler adds any
generated .idl files to the mbuild command line.

<filename>.def. You can specify DEF files on the mbuild command line to
indicate the symbols exported from a given shared library. It is an error to have
more than one .def file specified on the command line.

<filename>.rc. You can specify an RC file on the mbuild command line and it is
added into the DLL as required. It is an error to have more than one .rc file
specified on the command line.

COM Signature
For each M-file specified on the mcc command line, MATLAB Builder for COM
generates a COM-compatible interface function and a generic C interface
function.

M-Function Signature.

[Y1, Y2, , Varargout] = f(X1, X2, , Varargin)

C Signature.

void mlxF(int nlhs, mxArray* plhs[],
 int nrhs, const mxArray* prhs[]);

mxArray *mlfNF(int nargout,
mxArray ** y1,
mxArray **y2,
.
.
mxArray *x1,
mxArray *x2,
.
.
...);

COM Object Target
COM/IDL Signature.

HRESULT f([in] long nargout,
 [in,out] VARIANT* Y1,
 [in,out] VARIANT* Y2,
 .
 .
 [in,out] VARIANT* varargout,
 [in] VARIANT X1,
 [in] VARIANT X2,
 .
 .
 [in] VARIANT varargin);

The COM run-time performs all of the conversion between the COM types and
MATLAB arrays. For details on this conversion, see the MATLAB Builder for
Excel or MATLAB Builder for COM documentation.
7-7

7 COM and Excel Components

7-8
Excel Plug-In Target

Note To create Excel plug-ins using the MATLAB Compiler, you must have
MATLAB Builder for Excel installed on your system. For more information,
see the MATLAB Builder for Excel documentation.

With the optional MATLAB Builder for Excel product, you can automatically
generate a Visual Basic Application file (.bas) and a plug-in DLL from your
MATLAB based application that can be imported into Excel as a stand-alone
function.

You can use mcc to create a COM object from MATLAB M-files that can be used
as an Excel plug-in. The collection of M-files is translated into a single Excel
plug-in. MATLAB Builder for Excel supports one class per component.

Excel Plug-in Wrapper
The interface to the COM class is the same set of functions that are exported
from a C shared library, but the MATLAB Compiler supports both C and C++
code generation in producing COM objects.

mcc automatically

• Invokes the Microsoft Interface Definition Language (MIDL) Compiler

• Invokes the resource compiler

• Specifies the .DEF files

Using mcc options you can enable auto registration of the COM-compatible
DLL.

Note MATLAB Builder for Excel is available on Windows only. The only
compilers that support the building of Excel plug-ins with the MATLAB
Compiler are Borland C++Builder (versions 3.0, 4.0, and 5.0) and Microsoft
Visual C/C++ (versions 6.0, 7.0, and 7.1). The Borland C++Builder products
require you to have the MIDL Compiler provided by Microsoft to create COM
objects.

Excel Plug-In Target
For example, to compile plus1.m into an Excel plug-in, use

mcc -B 'cexcel:addin,addin,1.0' plus1.m

The COM class generated by MATLAB Builder for Excel has the same
structure and obeys the same rules as the COM classes generated by MATLAB
Builder for COM. For more details, see “COM Object Target” on page 7-3 and
the MATLAB Builder for Excel documentation.
7-9

7 COM and Excel Components

7-1
0

8

Reference

Functions — Categorical List (p. 8-2) Tables of functions grouped by category

8 Reference

8-2
Functions — Categorical List

Pragmas

Command Line Tools

%#external Pragma to call arbitrary C/C++ functions from your
M-code.

%#function feval pragma.

buildmcr Generate the MCRInstaller archive.

isdeployed Determine if code is running in deployed mode or
MATLAB mode.

mbuild Compile and link source files into a stand-alone
executable or shared library.

mcc Invoke MATLAB Compiler.

%#external
8%#externalPurpose Pragma to call arbitrary C/C++ functions from your M-code

Syntax %#external

Description The %#external pragma informs the MATLAB Compiler that the
implementation version of the function (Mlxf) will be hand written and will not
be generated from the M-code. This pragma affects only the single function in
which it appears, and any M-function may contain this pragma (local, global,
private, or method).

When using this pragma, the Compiler will generate an additional header file
called fcn_external.h, where fcn is the name of the initial M-function
containing the %#external pragma. This header file will contain the extern
declaration of the function that the user must provide. This function must
conform to the same interface as the Compiler-generated code. For more
information on the %#external pragma, see “Interfacing M-Code to C/C++
Code” on page 4-13.
8-3

%#function
8%#functionPurpose feval pragma

Syntax %#function <function_name-list>

Description This pragma informs the MATLAB Compiler that the specified function(s) will
be called through an feval, eval, or Handle Graphics callback. You need to
specify this pragma only to assist the Compiler in locating and automatically
compiling the set of functions when using the -h option.

If you are using the %#function pragma to define functions that are not
available in M-code, you should use the %#external pragma to define the
function. For example:

%#function myfunctionwritteninc

This implies that myfunctionwritteninc is an M-function that will be called
using feval. The Compiler will look up this function to determine the correct
number of input and output variables. Therefore, you need to provide a dummy
M-function that contains a function line and a %#external pragma, such as

function y = myfunctionwritteninc(a, b, c);
%#external

The function statement indicates that the function takes three inputs (a, b, c)
and returns a single output variable (y). No additional lines need to be present
in the M-file.
8-4

buildmcr
8buildmcrPurpose Generate MCRInstaller archive

Syntax buildmcr;
filename = buildmcr;
filename = buildmcr(dirname);
filename = buildmcr(dirname,filename);

Description The buildmcr function builds the MCRInstaller archive, MCRInstaller.zip, in
the default directory. The archive is a ZIP file of the files required for the MCR.
Directories are created as needed.

Examples Example 1
buildmcr;

This example builds MCRInstaller.zip in the default directory. It returns
nothing (unless it encounters an error or it is not the first time).

Example 2
mcr_zipfile = buildmcr;

This example builds MCRInstaller.zip in the default directory and returns
the path of the generated ZIP file in mcr_zipfile as

mcr_zipfile = ...
 fullfile(matlabroot,'toolbox','compiler',
 'deploy',ARCH,'MCRInstaller.zip');

Example 3
mcr_zipfile = buildmcr(mcr_zipfile_dirname);

This example returns the ZIP file in

<mcr_zipfile_dirname>/MCRInstaller.zip

Example 4
mcr_zipfile =
buildmcr(mcr_zipfile_dirname,mcr_zipfile_filename);

returns the ZIP file in

<mcr_zipfile_dirname>/<mcr_zipfile_filename>
8-5

buildmcr
Example 5
mcr_zipfile = buildmcr('.');

This example builds MCRInstaller.zip in the current directory and returns

mcr_zipfile = fullfile(pwd,'MCRInstaller.zip')

Example 6
mcr_zipfile = buildmcr('.','my.zip');

This example builds my.zip in the current directory and returns

mcr_zipfile = fullfile(pwd,'my.zip')

Example 7
[mcr_zipfile,mcrlist] = buildmcr(...)

This example returns the list of the files in the ZIP file in mcrlist. It is a cell
array of paths each relative to the MATLAB root directory. If the ZIP file
already exists, nothing is done and a warning is produced. The required list is
constructed from the installer files and pruned appropriately.
8-6

isdeployed
8isdeployedPurpose Test if code is running in deployed mode or MATLAB mode

Syntax x = isdeployed

Description x = isdeployed returns true (1) when the function is running in deployed
mode and false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the application with
the MATLAB Compiler, the function will return true when the application is
run in deployed mode. If you run the application containing this function in a
MATLAB session, the function will return false.
8-7

mbuild
8mbuildPurpose Compile and link source files into a stand-alone executable or shared library

Syntax mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
 [objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]
 [exportfile1 ... exportfileN]

Note Supported types of source files are: .c, .cpp, .idl, .rc. To specify IDL
source files to be compiled with the Microsoft Interface Definition Language
(MIDL) Compiler, add <filename>.idl to the mbuild command line. To
specify a DEF file, add <filename>.def to the command line. To specify an RC
file, add <filename>.rc to the command line. Source files that are not one of
the supported types are passed to the linker.

Description mbuild is a script that supports various options that allow you to customize the
building and linking of your code. Table 8-1, mbuild Options, lists the set of
mbuild options. If no platform is listed, the option is available on both UNIX
and Windows.

Table 8-1: mbuild Options

Option Description

-<arch> (UNIX) Assume local host has architecture
<arch>. Possible values for <arch> include
sol2, hpux, and glnx86.

@<response_file> (Windows) Replace @<response_file> on the
mbuild command line with the contents of the
text file, response_file.

-c Compile only. Do not link. Creates an object file
but not an executable.

-D<name> Define a symbol name to the C/C++
preprocessor. Equivalent to a #define <name>
directive in the source.
8-8

mbuild
-D<name>#<value> Define a symbol name and value to the C/C++
preprocessor. Equivalent to a
#define <name> <value> directive in the
source.

-D<name>=<value> (UNIX) Define a symbol name and value to the
C preprocessor. Equivalent to a
#define <name> <value> directive in the
source.

-f <<optionsfile>> Specify location and name of options file to use.
Overrides the mbuild default options file search
mechanism.

-g Create a debuggable executable. If this option is
specified, mbuild appends the value of options
file variables ending in DEBUGFLAGS with their
corresponding base variable. This option also
disables the mbuild default behavior of
optimizing built object code.

-h[elp] Help; prints a description of mbuild and the list
of options.

-I<pathname> Add <pathname> to the list of directories to
search for #include files.

-inline Inline matrix accessor functions (mx*).

-l<name> (UNIX) Link with object library lib<name>.

-L<directory> (UNIX) Add <directory> to the list of
directories containing object-library routines.

Table 8-1: mbuild Options (Continued)

Option Description
8-9

mbuild
-lang <language> Specify compiler language. <language> can be c
or cpp. By default, mbuild determines which
compiler (C or C++) to use by inspection of the
source file’s extension. This option overrides
that mechanism. This option is necessary when
you use an unsupported file extension, or when
you pass in all .o files and libraries.

-n No execute mode. Print out any commands that
mbuild would execute, but do not actually
execute any of them.

-O Optimize the object code by including the
optimization flags listed in the options file. If
this option is specified, mbuild appends the
value of options file variables ending in
OPTIMFLAGS with their corresponding base
variable. Note that optimizations are enabled by
default, are disabled by the -g option, but are
reenabled by -O.

-outdir <dirname> Place any generated object, resource, or
executable files in the directory <dirname>. Do
not combine this option with -output if the
-output option gives a full pathname.

-output <resultname> Create an executable named <resultname>. An
appropriate executable extension is
automatically appended. Overrides the mbuild
default executable naming mechanism.

-regsvr (Windows) Use the regsvr32 program to
register the resulting shared library at the end
of compilation. The Compiler uses this option
whenever it produces a COM wrapper file.

Table 8-1: mbuild Options (Continued)

Option Description
8-10

mbuild
-setup Interactively specify the compiler options file to
use as default for future invocations of mbuild
by placing it in
<UserProfile>\Application Data\MathWorks\
MATLAB\R14 (Windows) or $HOME/.matlab/R14
(UNIX). When this option is specified, no other
command line input is accepted.

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the -D
option.)

-v Verbose; Print the values for important internal
variables after the options file is processed and
all command line arguments are considered.
Prints each compile step and final link step fully
evaluated to see which options and files were
used. Very useful for debugging.

<name>=<value> (UNIX) Override an options file variable for
variable <name>. If <value> contains spaces,
enclose it in single quotes, e.g., CFLAGS='opt1
opt2'. The definition, <def>, can reference
other variables defined in the options file. To
reference a variable in the options file, prepend
the variable name with a $, e.g.,
CFLAGS='$CFLAGS opt2'.

<name>#<value> Override an options file variable for variable
<name>. If <def> contains spaces, enclose it in
single quotes, e.g., CFLAGS='opt1 opt2'. The
definition, <def>, can reference other variables
defined in the options file. To reference a
variable in the options file, prepend the variable
name with a $, e.g., CFLAGS='$CFLAGS opt2'.

Table 8-1: mbuild Options (Continued)

Option Description
8-11

mbuild
Note Some of these options (-f, -g, and -v) are available on the mcc
command line and are passed along to mbuild. Others can be passed along
using the -M option to mcc. For details on the -M option, see the mcc reference
page.
8-12

mcc
8mccPurpose Invoke MATLAB Compiler

Syntax mcc [-options] mfile1 [mfile2 ... mfileN]
[C/C++file1 ... C/C++fileN]

Description mcc is the MATLAB command that invokes the MATLAB Compiler. You can
issue the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (stand-alone mode).

Prepares M-file(s) for deployment outside of the MATLAB environment.
Generates wrapper files in C or C++, and optionally builds stand-alone binary
files. Writes any resulting files into the current directory, by default.

If more than one M-file is specified on the command line, the Compiler
generates a C or C++ function for each M-file. If C or object files are specified,
they are passed to mbuild along with any generated C files.

Options -a Add to Archive. -Add a file to the CTF archive. Use

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a options are
permitted. The Compiler looks for these files on the MATLAB path, so
specifying the full pathname is optional. These files are not passed to mbuild,
so you can include files such as data files.

-b Generate Excel-Compatible Formula Function. Generate a Visual Basic file (.bas)
containing the Microsoft Excel Formula Function interface to the
Compiler-generated COM object. When imported into the workbook Visual
Basic code, this code allows the MATLAB function to be seen as a cell formula
function. Requires MATLAB Builder for Excel.

-B Specify bundle File. Replace the file on the mcc command line with the contents
of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command line options and
corresponding arguments and/or other filenames. The file may contain other -B
options. A bundle file can include replacement parameters for Compiler options
8-13

mcc
that accept names and version numbers. See “Using Bundle Files” on page 4-7
for a list of the bundle files included with the Compiler.

-c Generate C Code Only. When used with a macro option, generate C code but do
not invoke mbuild, i.e., do not produce a stand-alone application. This option is
equivalent to -T codegen placed at the end of the mcc command line.

-d Specified Directory for Output. Place output in a specified directory. Use

-d directory

to direct the output files from the compilation to the directory specified by the
-d option.

-f Specified Options File. Override the default options file with the specified
options file. Use

-f filename

to specify filename as the options file when calling mbuild. This option allows
you to use different ANSI compilers for different invocations of the MATLAB
Compiler. This option is a direct pass-through to the mbuild script.

Note It is recommended that you use mbuild -setup.

-g Generate Debugging Information. Include debugging symbol information for the
wrapper.

-G Debug Only. Causes mbuild to invoke the C/C++ compiler with the
appropriate C/C++ compiler options for debugging. You should specify -G if you
want to debug the stand-alone application with a debugger.

-I Add Directory to Path. Add a new directory path to the list of included
directories. Each -I option adds a directory to the end of the current search
path. For example,

-I <directory1> -I <directory2>
8-14

mcc
would set up the search path so that directory1 is searched first for M-files,
followed by directory2. This option is important for stand-alone compilation
where the MATLAB path is not available.

-l Generate a Function Library. Macro to create a function library. This option
generates a library wrapper function for each M-file on the command line and
calls your C compiler to build a shared library, which exports these functions.
The library name is the component name, which is derived from the name of
the first M-file on the command line. This macro is equivalent to

-W lib -T link:lib

-m Generate a Stand-Alone Application. Macro to produce a stand-alone
application. This macro is equivalent to

-W main -T link:exe

-M Direct Pass Through. Define compile-time options. Use

-M string

to pass string directly to the mbuild script. This provides a useful mechanism
for defining compile-time options, e.g., -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is
used.

-N Clear Path. Passing -N effectively clears the path of all directories except the
following core directories (this list is subject to change over time):

• <matlabroot>/toolbox/matlab
• <matlabroot>/toolbox/local
• <matlabroot>/toolbox/compiler

It also retains all subdirectories of the above list that appear on the MATLAB
path at compile time. Including -N on the command line also allows you to
replace directories from the original path, while retaining the relative ordering
of the included directories. All subdirectories of the included directories that
appear on the original path are also included.
8-15

mcc
-o Specify Executable. Specify the name and location of the final executable
(stand-alone applications only). Use

-o outputfile

to name the final executable output of the Compiler. A suitable, possibly
platform-dependent, extension is added to the specified name (e.g., .exe for
Windows stand-alone applications).

-p Add Directory to Path. Add a directory to the compilation path in an
order-sensitive context, i.e., the same order in which they are found on your
MATLAB path.

-p directory

where directory is the directory to be included. If directory is not an absolute
path, it is assumed to be under the current working directory. The rules for how
these directories are included are

• If a directory is included with -p that is on the original MATLAB path, the
directory and all its subdirectories that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a directory is included with -p that is not on the original MATLAB path,
that directory is not included in the compilation. (You can use -I to add it.)

If a path is added with the -I option while this feature is active (-N has been
passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the directory
is added to the head of the path, as it normally would be with -I.

Note Requires -N option.

-R Run-Time. Provide MCR run-time options. Use the syntax

-R option

to provide any of these run-time options.
8-16

mcc
Note The -R option is only available for stand-alone applications. To override
MCR options in the other MATLAB Compiler targets, use the
mclInitializeApplication and mclTerminateApplication functions. For
more information on these functions, see “Calling a Shared Library” on
page 6-9.

-T Specify Target Stage. Specify the output target phase and type. Use the syntax

-T target

to define the output type. Valid target values are as follows:

Option Description

-nojvm Do not use the Java Virtual Machine (JVM).

-nojit Do not use the MATLAB JIT (binary code
generation used to accelerate M-file execution).

Table 8-2: Output Stage Options

Target Description

codegen Generates a C/C++ wrapper file. The default is
codegen.

compile:exe Same as codegen plus compiles C/C++ files to
object form suitable for linking into a stand-alone
executable.

compile:lib Same as codegen plus compiles C/C++ files to
object form suitable for linking into a shared
library/DLL.

link:exe Same as compile:exe plus links object files into a
stand-alone executable.
8-17

mcc
-v Verbose. Display the compilation steps, including

• The Compiler version number

• The source filenames as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about
mbuild.

-w Warning Messages. Displays warning messages. Use the syntax

-w option[:<msg>]

to control the display of warnings. This table lists the valid syntaxes.

link:lib Same as compile:lib plus links object files into a
shared library/DLL.

Notes: exe uses the mbuild script to build an executable;
lib uses mbuild to build a shared library.

Table 8-3: Warning Option

Syntax Description

-w list Generates a table that maps <string> to
warning message for use with enable,
disable, and error. Appendix B, “Error and
Warning Messages” lists the same
information.

-w enable Enables complete warnings.

Table 8-2: Output Stage Options (Continued)

Target Description
8-18

mcc
-W Wrapper Function. Controls the generation of function wrappers. Use the
syntax

-W type

to control the generation of function wrappers for a collection of
Compiler-generated M-files. You provide a list of functions and the Compiler
generates the wrapper functions and any appropriate global variable
definitions. This table shows the valid options.

-w disable[:<string>] Disables specific warning associated with
<string>. Appendix B, “Error and Warning
Messages” lists the valid <string> values.
Leave off the optional :<string> to apply the
disable action to all warnings.

-w enable[:<string>] Enables specific warning associated with
<string>. Appendix B, “Error and Warning
Messages” lists the valid <string> values.
Leave off the optional :<string> to apply the
enable action to all warnings.

-w error[:<string>] Treats specific warning associated with
<string> as error. Leave off the optional
:<string> to apply the error action to all
warnings.

Table 8-3: Warning Option (Continued)

Syntax Description
8-19

mcc
-Y License File. Use

-Y license.dat_file

to override default license.dat file with specified argument.

-z Specify Path. Specify path for library and include files. Use

-z path

to specify path to use for the compiler libraries and include files instead of the
path returned by matlabroot.

-? Help Message. Display MATLAB Compiler help at the command prompt.

Examples Make a stand-alone executable for myfun.m.

Table 8-4: Function Wrapper Types

Type Description

main Produces a POSIX shell main() function.

lib:<string> Produces an initialization and
termination function for use when
compiling this Compiler-generated code
into a larger application. This option also
produces a header file containing
prototypes for all public functions in all
M-files specified. <string> becomes the
base (file) name for the generated C/C++
and header file. Creates a .exports file
that contains all nonstatic function
names.

com:<component_name>,<class_name>,<version> Produces a COM object from MATLAB
M-files.

none Does not produce a wrapper file. The
default is none.
8-20

mcc
mcc -m myfun

Make a stand-alone executable for myfun.m. Look for myfun.m in the
/files/source directory, and put the resulting C files and executable in the
/files/target directory.

mcc -m -I /files/source -d /files/target myfun

Make a stand-alone executable from myfun1.m and myfun2.m (using one mcc
call).

mcc -m myfun1 myfun2

Make a shared/dynamically linked library called liba from a0.m and a1.m.

mcc -W lib:liba -T link:lib a0 a1
8-21

mcc
8-22

A

MATLAB Compiler Quick
Reference

This appendix summarizes the MATLAB Compiler options and provides brief descriptions of how to
perform common tasks.

Common Uses of the Compiler (p. A-2) Brief summary of how to use the Compiler

mcc (p. A-4) Quick reference table of Compiler options

A MATLAB Compiler Quick Reference

A-2
Common Uses of the Compiler
This section summarizes how to use the MATLAB Compiler to generate some
of its more standard results.

Create a Stand-Alone Application

Example 1
To create a stand-alone executable for mymfile.m, use

mcc -m mymfile

Example 2
To create a stand-alone application for mymfile.m, look for mymfile.m in the
directory /files/source, and put the resulting C files and executable in
/files/target, use

mcc -m -I /files/source -d /files/target mymfile

Example 3
To create a stand-alone application from mymfile1.m and mymfile2.m using a
single mcc call, use

mcc -m mymfile1 mymfile2

Create a Library

Example 1
To create a C shared library from foo.m, use

mcc -l foo.m

Example 2
To create a C shared library called library_one from foo1.m and foo2.m, use

mcc -W lib:library_one -T link:lib foo1 foo2

Common Uses of the Compiler
Note You can add the -g option to any of these for debugging purposes.
A-3

A MATLAB Compiler Quick Reference

A-4
mcc
Bold entries in the Comment/Options column indicate default values.

Table A-1: mcc Quick Reference

Option Description Comment/Options

a filename Add filename to the
CTF archive

None

b Generate
Excel-compatible
formula function

Requires MATLAB Builder for Excel

B filename[:arg[,arg]] Replace -B filename
on the mcc command
line with the contents
of filename

The file should contain only mcc
command line options. These are
MathWorks included options files:
-B csharedlib:foo C shared library
-B cpplib:foo C++ library

c Generate C wrapper
code

Equivalent to
-T codegen

d directory Place output in
specified directory

None

f filename Use the specified
options file, filename,
when calling mbuild

mbuild -setup is recommended.

g Generate debugging
information

None

G Debug only. Simply
turn debugging on, so
debugging symbol
information is
included.

None

mcc
I directory Add directory to
search path for M-files

MATLAB path is automatically
included when running from
MATLAB, but not when running from
DOS/UNIX shell.

l Macro to create a
function library

Equivalent to
-W lib -T link:lib

m Macro to generate a C
stand-alone application

Equivalent to
-W main -T link:exe

M string Pass string to mbuild Use to define compile-time options.

N Clear the path of all
but a minimal,
required set of
directories

None

o outputfile Specify name/location
of final executable

Adds appropriate extension

P directory Add directory to
compilation path in an
order-sensitive context

Requires -N option

R option Specify run-time
options for MCR

option =
-nojvm
-nojit

T target Specify output stage target = codegen
compile:bin
link:bin

where bin = exe
lib

v Verbose; Display
compilation steps

None

Table A-1: mcc Quick Reference (Continued)

Option Description Comment/Options
A-5

A MATLAB Compiler Quick Reference

A-6
w option Display warning
messages

option = list
level
level:string

where level = disable
enable
error

W type Control the generation
of function wrappers

type = main
lib:<string>
none
com:compname,clname,version

Y licensefile Use licensefile when
checking out a
Compiler license

None

z path Specify path for library
and include files

None

? Display help message None

Table A-1: mcc Quick Reference (Continued)

Option Description Comment/Options

B

Error and Warning
Messages

This appendix lists and describes error messages and warnings generated by the MATLAB Compiler.
Compile-time messages are generated during the compile or link phase. It is useful to note that most
of these compile-time error messages should not occur if MATLAB can successfully execute the
corresponding M-file. Run-time messages are generated when the executable program runs.

Use this reference to

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

When using the MATLAB Compiler, if you receive an internal error message, record the specific
message and report it to Technical Support at The MathWorks at support@mathworks.com.

Compile-Time Errors (p. B-2) Error messages generated at compile time

Warning Messages (p. B-5) User-controlled warnings generated by the Compiler

Run-Time Errors (p. B-7) Errors generated by the Compiler into your code

Depfun Errors (p. B-8) Errors generated by Depfun

B Error and Warning Messages

B-2
Compile-Time Errors
Error: An error occurred while shelling out to mex/mbuild (error code = errorno). Unable to
build executable (specify the -v option for more information). The Compiler reports this
error if mbuild or mex generates an error.

Error: An error occurred writing to file "filename": reason. The file could not be
written. The reason is provided by the operating system. For example, you may
not have sufficient disk space available to write the file.

Error: Cannot write file "filename" because MCC has already created a file with that name, or
a file with that name was specified as a command line argument. The Compiler has
been instructed to generate two files with the same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional Compiler licenses are
available for your workgroup.

Error: Could not find license file "filename". (Windows only) The license.dat file
could not be found in <matlabroot>\bin.

Error: File: "filename" not found. A specified file could not be found on the path.
Verify that the file exists and that the path includes the file’s location. You can
use the -I option to add a directory to the search path

Error: File: "filename" is a script M-file and cannot be compiled with the current Compiler.
The MATLAB Compiler cannot compile script M-files. To learn how to convert
script M-files to function M-files, see “Converting Script M-Files to Function
M-Files” on page 4-17.

Error: File: filename Line: # Column: # A variable cannot be made storageclass1 after being
used as a storageclass2. You cannot change a variable’s storage class
(global/local/persistent). Even though MATLAB allows this type of change in
scope, the Compiler does not.

Error: Found illegal whitespace character in command line option: "string". The strings on the
left and right side of the space should be separate arguments to MCC. For example:

mcc('-m', '-v', 'hello') % Correct
mcc('-m -v', 'hello') % Incorrect

Compile-Time Errors
Error: Improper usage of option -optionname. Type "mcc -?" for usage information. You
have incorrectly used a Compiler option. For more information about Compiler
options, see Chapter 8, “Reference” or type mcc -? at the command prompt.

Error: libraryname library not found. MATLAB has been installed incorrectly.

Error: No source files were specified (-? for help). You must provide the Compiler
with the name of the source file(s) to compile.

Error: "optionname" is not a valid -option option argument. You must use an
argument that corresponds to the option. For example:

mcc -W main % Correct
mcc -W mex % Incorrect

Error: Out of memory. Typically, this message occurs because the Compiler
requests a larger segment of memory from the operating system than is
currently available. Adding additional memory to your system could alleviate
this problem.

Error: Previous warning treated as error. When you use the -w error option, this
error displays immediately after a warning message.

Error: The argument after the -option option must contain a colon. The format for this
argument requires a colon. For more information, see Chapter 8, “Reference”
or type mcc -? at the command prompt.

Error: The environment variable MATLAB must be set to the MATLAB root directory. On
UNIX, the MATLAB and LM_LICENSE_FILE variables must be set. The mcc shell
script does this automatically when it is called the first time.

Error: The license manager failed to initialize (error code is errornumber). You do not
have a valid Compiler license or no additional Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -? for help). The specified
option is not available.

Error: The specified file "filename" cannot be read. There is a problem with your
specified file. For example, the file is not readable because there is no read
permission.
B-3

B Error and Warning Messages

B-4
Error: The -optionname option requires an argument (e.g. "proper_example_usage"). You
have incorrectly used a Compiler option. For more information about Compiler
options, see Chapter 8, “Reference” or type mcc -? at the command prompt.

Error: -x is no longer supported. The MATLAB Compiler no longer generates
MEX-files because there is no longer any performance advantage to doing so.
The MATLAB JIT Accelerator makes compilation for speed obsolete.

Error: Unable to open file "filename":<string>. There is a problem with your specified
file. For example, there is no write permission to the output directory, or the
disk is full.

Error: Unable to set license linger interval (error code is errornumber). A license
manager failure has occurred. Contact Technical Support at The MathWorks
with the full text of the error message.

Error: Unknown warning enable/disable string: warningstring. -w enable:, -w
disable:, and -w error: require you to use one of the warning string
identifiers listed in the “Warning Messages” on page B-5.

Error: Unrecognized option: -option. The option is not one of the valid options for
this version of the Compiler. See Chapter 8, “Reference” for a complete list of
valid options for MATLAB Compiler 3.0 or type mcc -? at the command
prompt.

Warning Messages
Warning Messages
This section lists the warning messages that the MATLAB Compiler can
generate. Using the -w option for mcc, you can control which messages are
displayed. Each warning message contains a description and the warning
message identifier string (in parentheses) that you can enable or disable with
the -w option. For example, to enable the display of warnings related to
undefined variables, you can use

mcc -w enable:undefined_variable

To enable all warnings except those generated by the save command, use

mcc -w enable -w disable:save_options

To display a list of all the warning message identifier strings, use

mcc -w list -m mfilename

For additional information about the -w option, see Chapter 8, “Reference”.

Warning: File: filename Line: # Column: # The call to function "functionname" on this line could
not be bound to a function that is known at compile time. A run-time error will occur if this
code is executed. (no_matching_function) The called function was not found on
the search path. You can add the function to the MATLAB path or use the
MATLAB Compiler -a option to add the missing function at compile time.

Warning: File: filename Line: # Column: # The #function pragma expects a list of function
names. (pragma_function_missing_names) This pragma informs the MATLAB
Compiler that the specified function(s) provided in the list of function names
will be called through an feval call. This will automatically compile the
selected functions.

Warning: M-file "filename" was specified on the command line with full path of "pathname",
but was found on the search path in directory "directoryname" first.
(specified_file_mismatch) The Compiler detected an inconsistency between the
location of the M-file as given on the command line and in the search path. The
Compiler uses the location in the search path. This warning occurs when you
specify a full pathname on the mcc command line and a file with the same base
name (filename) is found earlier on the search path. This warning is issued in
the following example if the file afile.m exists in both dir1 and dir2.

mcc -m -I /dir1 /dir2/afile.m
B-5

B Error and Warning Messages

B-6
Warning: The file filename was repeated on the Compiler command line. (repeated_file)
This warning occurs when the same filename appears more than once on the
compiler command line. For example:

mcc -m sample.m sample.m % Will generate the warning

Warning: The name of a shared library should begin with the letters "lib". "libraryname"
doesn’t. (missing_lib_sentinel) This warning is generated if the name of the
specified library does not begin with the letters “lib”. This warning is specific
to UNIX and does not occur on Windows. For example:

mcc -t -W lib:liba -T link:lib a0 a1 % No warning
mcc -t -W lib:a -T link:lib a0 a1 % Will generate a warning

Warning: The specified private directory is not unique. Both "directoryname1" and
"directoryname2" are found on the path for this private directory.
(duplicate_private_directories) The Compiler cannot distinguish which private
function to use.

Run-Time Errors
Run-Time Errors

Note The error messages described in this section are generated by the
MATLAB Compiler into the code exactly as they are written, but are not the
only source of run-time errors.

Run-time Error: File: filename Line: # Column: # The call to function "functionname" on this line
passed quantity1 inputs and the function is declared with quantity2. There is an
inconsistency between the formal and actual number of inputs to a function.

Run-time Error: File: filename Line: # Column: # The call to function "functionname" on this line
requested quantity1 outputs and the function is declared with quantity2. There is an
inconsistency between the formal and actual number of outputs from a
function.

Run-time Error: File: filename Line: # Column: # The function "functionname" was called with
more than the declared number of inputs (quantity1). There is an inconsistency
between the declared number of formal inputs and the actual number of inputs.

Run-time Error: File: filename Line: # Column: # The function "functionname" was called with
more than the declared number of outputs (quantity1). There is an inconsistency
between the declared number of formal outputs and the actual number of
outputs.
B-7

B Error and Warning Messages

B-8
Depfun Errors
The MATLAB Compiler uses a dependency analysis (Depfun) to determine the
list of necessary files to include in the CTF package. If this analysis encounters
a problem, Depfun displays an error.

These error messages take the form

Depfun Error: <message>

There are three causes of these messages:

• MCR/Dispatcher errors

• XML parser errors

• Depfun-produced errors

MCR/Dispatcher Errors
These errors originate directly from the MCR/dispatcher. If one of these error
occurs, report it to Technical Support at The MathWorks at
support@mathworks.com.

XML Parser Errors
These errors appear as

Depfun Error: XML error: <message>

Where <message> is a message returned by the XML parser. If this error
occurs, report it to Technical Support at The MathWorks at
support@mathworks.com.

Depfun-Produced Errors
These errors originate directly from depfun.

Depfun Error: Internal error. This error occurs if an internal error is encountered
that is unexpected, for example, a memory allocation error or a system error of
some kind. This error is never user generated. If this error occurs, report it to
Technical Support at The MathWorks at support@mathworks.com.

Depfun Errors
Depfun Error: Unexpected error thrown. This error is similar to the previous one. If
this error occurs, report it to Technical Support at The MathWorks at
support@mathworks.com.

Depfun Error: Invalid file name: <filename>. An invalid filename was passed to
Depfun.

Depfun Error: Invalid directory: <dirname>. An invalid directory was passed to
Depfun.
B-9

B Error and Warning Messages

B-1
0

C
Troubleshooting

This appendix identifies some of the more common problems that may occur when using the
MATLAB Compiler.

mbuild (p. C-2) Issues involving the mbuild utility and creating
stand-alone applications

MATLAB Compiler (p. C-4) Issues involving the MATLAB Compiler

C Troubleshooting

C-2
mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create stand-alone applications.

Options File Not Writeable. When you run mbuild -setup, mbuild makes a copy of
the appropriate options file and writes some information to it. If the options file
is not writeable, you are asked if you want to overwrite the existing options file.
If you choose to do so, the existing options file is copied to a new location and a
new options file is created.

Directory or File Not Writeable. If a destination directory or file is not writeable,
ensure that the permissions are properly set. In certain cases, make sure that
the file is not in use.

mbuild Generates Errors. If you run mbuild filename and get errors, it may be
because you are not using the proper options file. Run mbuild -setup to ensure
proper compiler and linker settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such as
unrecognized command or file not found, make sure the command line tools
are installed and the path and other environment variables are set correctly in
the options file. For MS Visual Studio, for example, make sure to run
vcvars32.bat (MSVC 6.x and earlier) or vsvars32.bat (MSVC 7.x).

mbuild Not a Recognized Command. If mbuild is not recognized, verify that
<matlabroot>\bin is on your path. On UNIX, it may be necessary to rehash.

mbuild Works from Shell but Not from MATLAB (UNIX). If the command

mcc -m hello

works from the UNIX command prompt but does not work from the MATLAB
prompt, you may have a problem with your .cshrc file. When MATLAB
launches a new C shell to perform compilations, it executes the .cshrc script.
If this script causes unexpected changes to the PATH environment variable, an
error may occur. You can test this by performing a

set SHELL=/bin/sh

prior to launching MATLAB. If this works correctly, then you should check
your .cshrc file for problems setting the PATH environment variable.

mbuild
Cannot Locate Your Compiler (Windows). If mbuild has difficulty locating your
installed compilers, it is useful to know how it goes about finding compilers.
mbuild automatically detects your installed compilers by first searching for
locations specified in the following environment variables:

• BORLAND for Borland C/C++, Version 5.3

• MSVCDIR for Microsoft Visual C/C++, Version 6.0, 7.0, or 7.1

Next, mbuild searches the Windows registry for compiler entries.

Internal Error When Using mbuild -setup (Windows). Some antivirus software
packages such as Cheyenne AntiVirus and Dr. Solomon may conflict with the
mbuild -setup process. If you get an error message during mbuild -setup of
the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
reenable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses your
difficulty with mbuild, contact Technical Support at The MathWorks at
support@mathworks.com.
C-3

C Troubleshooting

C-4
MATLAB Compiler
Typically, problems that occur when building stand-alone C and C++
applications involve mbuild. However, it is possible that you may run into some
difficulty with the MATLAB Compiler. One problem that might occur when you
try to generate a stand-alone application involves licensing.

Licensing Problem. If you do not have a valid license for the MATLAB Compiler,
you will get an error message similar to the following when you try to access
the Compiler.

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this manual.

MATLAB Compiler Does Not Generate Application. If you experience other problems
with the MATLAB Compiler, contact Technical Support at The MathWorks at
support@mathworks.com.

Missing Functions In Callbacks. If your application includes a call to a function in a
callback string or in a string passed as an argument to the feval function or
an ODE solver, and this is the only place in your M-file this function is called,
the Compiler will not compile the function. The Compiler does not look in these
text strings for the names of functions to compile. See “Fixing Callback
Problems: Missing Functions” on page 1-22 for more information.

Borland Compiler Does Not Work with the Builder Products. The only compilers that
support the building of COM objects are Borland C++Builder (versions 3.0, 4.0,
5.0, and 6.0) and Microsoft Visual C/C++ (versions 6.0, 7.0, and 7.1). The
Borland C++Builder products require you to have the MIDL compiler provided
by Microsoft to create COM objects.

D

C++ Utility Library
Reference

This appendix describes the C++ utility library provided with the MATLAB Compiler.

Primitive Types (p. D-2) Primitive types that can be stored in a MATLAB array

mwString Class (p. D-4) String class used by the mwArray API to pass string data
as output

mwException Class (p. D-19) Exception type used by the mwArray API and the C++
interface functions

mwArray Class (p. D-27) Used to pass input/output arguments to MATLAB
Compiler-generated C++ interface functions

D C++ Utility Library Reference

D-2
Primitive Types
The mwArray API supports all primitive types that can be stored in a MATLAB
array. This table lists all the types.

Type Description mxClassID

mxChar Character type mxCHAR_CLASS

mxLogical Logical or Boolean type mxLOGICAL_CLASS

mxDouble Double-precision
floating-point type

mxDOUBLE_CLASS

mxSingle Single-precision
floating-point type

mxSINGLE_CLASS

mxInt8 1-byte signed integer mxINT8_CLASS

mxUint8 1-byte unsigned integer mxUINT8_CLASS

mxInt16 2-byte singed integer mxUINT16_CLASS

mxUint16 2-byte unsigned integer mxUINT16_CLASS

mxInt32 4-byte signed integer mxINT32_CLASS

mxUint32 4-byte unsigned integer mxUINT32_CLASS

mxInt64 8-byte signed integer mxINT64_CLASS

mxUint64 8-byte unsigned integer mxUINT64_CLASS

Utility Classes
Utility Classes
• “mwString Class” on page D-4

• “mwException Class” on page D-19

• “mwArray Class” on page D-27
D-3

D C++ Utility Library Reference

D-4
mwString Class
The mwString class is a simple string class used by the mwArray API to pass
string data as output from some certain methods.

Constructors
• “mwString()” on page D-5

• “mwString(const char* str)” on page D-6

• “mwString(const mwString& str)” on page D-7

Methods
• “int Length() const” on page D-8

Operators
• “operator const char* () const” on page D-9

• “mwString& operator=(const mwString& str)” on page D-10

• “mwString& operator=(const char* str)” on page D-11

• “bool operator==(const mwString& str) const” on page D-12

• “bool operator!=(const mwString& str) const” on page D-13

• “bool operator<(const mwString& str) const” on page D-14

• “bool operator<=(const mwString& str) const” on page D-15

• “bool operator>(const mwString& str) const” on page D-16

• “bool operator>=(const mwString& str) const” on page D-17

• “friend std::ostream& operator<<(std::ostream& os, const mwString& str)”
on page D-18

mwString()
mwString() 4

Construct an empty string

C++ syntax
#include "mclcppclass.h"
mwString str;

Arguments
None

Return value
None

Description
Use this constructor to create an empty string.
D-5

D C++ Utility Library Reference

D-6
mwString(const char* str) 4

Construct a new string and initialize the strings data with the supplied char
buffer

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");

Arguments

str. NULL-terminated char buffer to initialize the string.

Return value
None

Description
Use this constructor to create a string from a NULL-terminated char buffer.

mwString(const mwString& str)
mwString(const mwString& str) 4

Copy constructor for mwString

Constructs a new string and initialize its data with the supplied mwString.

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str(str); // new_str contains a copy of the

// characters in str.

Arguments

str. mwString to be copied

Return value
None

Description
Use this constructor to create an mwString that is a copy of an existing one.
D-7

D C++ Utility Library Reference

D-8
int Length() const 4

Return the number of characters in the string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
int len = str.Length(); // len should be 16.

Arguments
None

Return value
The number of characters in the string.

Description
Use this method to get the length of an mwString. The value returned does not
include the terminating NULL character.

operator const char* () const
operator const char* () const 4

Return a pointer to the internal buffer of the string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
const char* pstr = (const char*)str;

Arguments
None

Return value
A pointer to the internal buffer of the string.

Description
Use this operator to get direct read-only access to the string’s data buffer.
D-9

D C++ Utility Library Reference

D-1
mwString& operator=(const mwString& str) 4

mwString assignment operator

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str = str; // new_str contains a copy of the data

// in str.

Arguments

str. String to make a copy of.

Return value
A reference to the invoking mwString object.

Description
Use this operator to copy the contents of one string into another.
0

mwString& operator=(const char* str)
mwString& operator=(const char* str) 4

mwString assignment operator

C++ syntax
#include "mclcppclass.h"
const char* pstr = "This is a string";
mwString str = pstr; // str contains a copy of the data in pstr.

Arguments

str. char buffer to make copy of.

Return value
A reference to the invoking mwString object.

Description
Use this operator to copy the contents of a NULL-terminated

buffer into an mwString.
D-11

D C++ Utility Library Reference

D-1
bool operator==(const mwString& str) const 4

Test two mwStrings for equality

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str == str2); // ret should have a value of false.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for equality.
2

bool operator!=(const mwString& str) const
bool operator!=(const mwString& str) const 4

Test two mwStrings for inequality

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str != str2); // ret should have a value of

// true.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for inequality.
D-13

D C++ Utility Library Reference

D-1
bool operator<(const mwString& str) const 4

Compare the input string with this string and return true if this string is
lexicographically less than the input string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str < str2); // ret should have a value of

// true.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for order.
4

bool operator<=(const mwString& str) const
bool operator<=(const mwString& str) const 4

Compare the input string with this string and return true if this string is
lexicographically less than or equal to the input string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str <= str2); // ret should have a value of

// true.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for order.
D-15

D C++ Utility Library Reference

D-1
bool operator>(const mwString& str) const 4

Compare the input string with this string and return true if this string is
lexicographically greater than the input string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str > str2); // ret should have a value of

// false.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for order.
6

bool operator>=(const mwString& str) const
bool operator>=(const mwString& str) const 4

Compare the input string with this string and return true if this string is
lexicographically greater than or equal to the input string

C++ syntax
#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str >= str2);// ret should have a value of false.

Arguments

str. String to compare.

Return value
The result of the comparison.

Description
Use this operator to test two strings for order.
D-17

D C++ Utility Library Reference

D-1
friend std::ostream& operator<<(std::ostream& os, const
mwString& str) 4

Copy the contents of the input string to the specified ostream

C++ syntax
#include "mclcppclass.h"
#include <ostream>
mwString str("This is a string");
std::cout << str << std::endl; // should print "This is a

// string" to standard out.

Arguments

os. ostream to copy string to.

str. String to copy.

Return value
The input ostream.

Description
Use this operator to print the contents of an mwString to an ostream.
8

mwException Class
mwException Class
The mwException class is the basic exception type used by the mwArray API and
the C++ interface functions. All errors created during calls to the mwArray API
and to MATLAB Compiler-generated C++ interface functions are thrown as
mwExceptions.

Constructors
• “mwException()” on page D-20

• “mwException(const char* msg)” on page D-21

• “mwException(const mwException& e)” on page D-22

• “mwException(const std::exception& e)” on page D-23

Methods
• “const char *what() const throw()” on page D-24

Operators
• “mwException& operator=(const mwException& e)” on page D-25

• “mwException& operator=(const std::exception& e)” on page D-26
D-19

D C++ Utility Library Reference

D-2
mwException() 4

Construct a new mwException with the default error message

C++ syntax
#include "mclcppclass.h"
throw mwException();

Arguments
None

Return value
None

Description
Use this constructor to create an mwException without specifying an error
message.
0

mwException(const char* msg)
mwException(const char* msg) 4

Construct a new mwException with a specified error message

C++ syntax
#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

std::cout << e.what() << std::endl; // Displays "This is
// an error" to
// standard out.

}

Arguments

msg. Error message.

Return value
None

Description
Use this constructor to create an mwException with a specified error message.
D-21

D C++ Utility Library Reference

D-2
mwException(const mwException& e) 4

Copy constructor for mwException class

C++ syntax
#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments

e. mwException to create copy of.

Return value
None

Description
Use this constructor to create a copy of an mwException. The copy will have the
same error message as the original.
2

mwException(const std::exception& e)
mwException(const std::exception& e) 4

Create a new mwException from an existing std::exception

C++ syntax
#include "mclcppclass.h"
try
{

.
}
catch (const std::exception& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments

e. std::exception to create copy of.

Return value
None

Description
Use this constructor to create a new mwException and initialize the error
message with the error message from the given std::exception.
D-23

D C++ Utility Library Reference

D-2
const char *what() const throw() 4

Return the error message contained in this exception

C++ syntax
#include "mclcppclass.h"
try
{

.
}
catch (const std::exception& e)
{

std::cout << e.what() << std::endl; // Displays the error
// message to
// standard out.

}

Arguments
None

Return value
A pointer to a NULL-terminated character buffer containing the error
message.

Description
Use this method to retrieve the error message from an mwException.
4

mwException& operator=(const mwException& e)
mwException& operator=(const mwException& e) 4

Assignment operator for mwException class

C++ syntax
#include "mclcppclass.h"
try
{

}
catch (const mwException& e)
{

mwException e2 = e;
throw e2;

}

Arguments

e. mwException to create copy of.

Return value
A reference to the invoking mwException.

Description
Use this operator to create a copy of an mwException. The copy will have the
same error message as the original.
D-25

D C++ Utility Library Reference

D-2
mwException& operator=(const std::exception& e) 4

Assignment operator for mwException class

C++ syntax
#include "mclcppclass.h"
try
{

}
catch (const std::exception& e)
{

mwException e2 = e;
throw e2;

}

Arguments

e. std::exception to initialize copy with.

Return value
A reference to the invoking mwException.

Description
Use this operator to create a copy of an std::exception. The copy will have the
same error message as the original.
6

mwArray Class
mwArray Class
Use the mwArray class to pass input/output arguments to MATLAB
Compiler-generated C++ interface functions. This class consists of a thin
wrapper around a MATLAB array. The mwArray class provides the necessary
constructors, methods, and operators for array creation and initialization, as
well as simple indexing.

Constructors
• “mwArray()” on page D-30

• “mwArray(mxClassID mxID)” on page D-31

• “mwArray(int num_rows, int num_cols, mxClassID mxID, mxComplexity
cmplx = mxREAL)” on page D-32

• “mwArray(int num_dims, const int* dims, mxClassID mxID, mxComplexity
cmplx = mxREAL)” on page D-33

• “mwArray(const char* str)” on page D-34

• “mwArray(int num_strings, const char** str)” on page D-35

• “mwArray(int num_rows, int num_cols, int num_fields, const char**
fieldnames)” on page D-36

• “mwArray(int num_dims, const int* dims, int num_fields, const char**
fieldnames)” on page D-37

• “mwArray(const mwArray& arr)” on page D-38

• “mwArray(<type> re)” on page D-39

• “mwArray(<type> re, <type> im)” on page D-40

Methods
• “mwArray Clone() const” on page D-41

• “mwArray SharedCopy() const” on page D-42

• “mwArray Serialize() const” on page D-43

• “mxClassID ClassID() const” on page D-44

• “int ElementSize() const” on page D-45

• “int NumberOfElements() const” on page D-46
D-27

D C++ Utility Library Reference

D-2
• “int NumberOfNonZeros() const” on page D-47

• “int MaximumNonZeros() const” on page D-48

• “int NumberOfDimensions() const” on page D-49

• “int NumberOfFields() const” on page D-50

• “mwString GetFieldName(int index)” on page D-51

• “mwArray GetDimensions() const” on page D-52

• “bool IsEmpty() const” on page D-53

• “bool IsSparse() const” on page D-54

• “bool IsNumeric() const” on page D-55

• “bool IsComplex() const” on page D-56

• “bool Equals(const mwArray& arr) const” on page D-57

• “int CompareTo(const mwArray& arr) const” on page D-58

• “int HashCode() const” on page D-59

• “mwString ToString() const” on page D-60

• “mwArray RowIndex() const” on page D-61

• “mwArray ColumnIndex() const” on page D-62

• “void MakeComplex()” on page D-63

• “mwArray Get(int num_indices, ...)” on page D-64

• “mwArray Get(const char* name, int num_indices, ...)” on page D-65

• “mwArray GetA(int num_indices, const int* index)” on page D-67

• “mwArray GetA(const char* name, int num_indices, const int* index)” on
page D-69

• “mwArray Real()” on page D-71

• “mwArray Imag()” on page D-72

• “void Set(const mwArray& arr)” on page D-73

• “void GetData(<numeric-type>* buffer, int len) const” on page D-74

• “void GetLogicalData(mxLogical* buffer, int len) const” on page D-75

• “void GetCharData(mxChar* buffer, int len) const” on page D-76

• “void SetData(<numeric-type>* buffer, int len)” on page D-77

• “void SetLogicalData(mxLogical* buffer, int len)” on page D-78

• “void SetCharData(mxChar* buffer, int len)” on page D-79
8

mwArray Class
Operators
• “mwArray operator()(int i1, int i2, int i3, …,)” on page D-80

• “mwArray operator()(const char* name, int i1, int i2, int i3, …,)” on
page D-81

• “mwArray& operator=(const <type>& x)” on page D-83

• “operator <type>() const” on page D-84

Static Methods
• “static mwArray Deserialize(const mwArray& arr)” on page D-85

• “static double GetNaN()” on page D-86

• “static double GetEps()” on page D-87

• “static double GetInf()” on page D-88

• “static bool IsFinite(double x)” on page D-89

• “static bool IsInf(double x)” on page D-90

• “static bool IsNaN(double x)” on page D-91
D-29

D C++ Utility Library Reference

D-3
mwArray() 4

Construct an empty array of type mxUNKNOWN_CLASS

C++ syntax
#include "mclcppclass.h"
mwArray a;

Return value
None

Description
Use this constructor to create an empty array of unknown type.
0

mwArray(mxClassID mxID)
mwArray(mxClassID mxID) 4

Construct an empty array of a specified type

C++ syntax
#include "mclcppclass.h"
mwArray a(mxDOUBLE_CLASS);

Return value
None

Description
Use this constructor to create an empty array of the specified type. Any valid
mxClassID can be used. See the External Interfaces documentation for more
information on mxClassID.
D-31

D C++ Utility Library Reference

D-3
mwArray(int num_rows, int num_cols, mxClassID mxID,
mxComplexity cmplx = mxREAL) 4

Construct a matrix of the specified type and dimensions

For numeric types, the matrix can be either real or complex.

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(3, 3, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(2, 3, mxCELL_CLASS);

Arguments

num_rows. The number of rows

num_cols. The number of columns

mxID. The datatype type of the matrix

cmplx. The complexity of the matrix (numeric types only)

Return value
None

Description
Use this constructor to create a matrix of the specified type and complexity.
You can use any valid mxClassID. Consult the External Interfaces
documentation for more information on mxClassID. For numeric types, pass
mxCOMPLEX for the last argument to create a complex matrix. All elements are
initialized to zero. For cell matrices, all elements are initialized to empty cells.
2

mwArray(int num_dims, const int* dims, mxClassID mxID, mxComplexity cmplx = mxREAL)
mwArray(int num_dims, const int* dims, mxClassID mxID,
mxComplexity cmplx = mxREAL) 4

Construct an n-dimensional array of the specified type and dimensions

For numeric types, the array can be either real or complex.

C++ syntax
#include "mclcppclass.h"
int dims[3] = {2,3,4};
mwArray a(3, dims, mxDOUBLE_CLASS);
mwArray b(3, dims, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(3, dims, mxCELL_CLASS);

Arguments

num_dims. Size of the dims array

dims. Dimensions of the array

mxID. The datatype type of the matrix.

cmplx. The complexity of the matrix (numeric types only)

Return value
None

Description
Use this constructor to create an n-dimensional array of the specified type and
complexity. You can use any valid mxClassID. Consult the External Interfaces
documentation for more information on mxClassID. For numeric types, pass
mxCOMPLEX for the last argument to create a complex matrix. All elements are
initialized to zero. For cell arrays, all elements are initialized to empty cells.
D-33

D C++ Utility Library Reference

D-3
mwArray(const char* str) 4

Construct a character array from the supplied string

C++ syntax
#include "mclcppclass.h"
mwArray a("This is a string");

Arguments

str. NULL-terminated string

Return value
None

Description
Use this constructor to create a 1-by-n array of type mxCHAR_CLASS, with n =
strlen(str), and initialize the array’s data with the characters in the supplied
string.
4

mwArray(int num_strings, const char** str)
mwArray(int num_strings, const char** str) 4

Construct a character matrix from a list of strings

C++ syntax
#include "mclcppclass.h"
const char** str = {"String1", "String2", "String3"};
mwArray a(3, str);

Arguments

num_strings. Number of strings in the input array

str. Array of NULL-terminated strings

Return value
None

Description
Use this constructor to create a matrix of type mxCHAR_CLASS, and initialize the
array’s data with the characters in the supplied strings. The created array has
dimensions m-by-max, where max is the length of the longest string in str.
D-35

D C++ Utility Library Reference

D-3
mwArray(int num_rows, int num_cols, int num_fields, const
char** fieldnames) 4

Construct a struct matrix of the specified dimensions and fieldnames

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);

Arguments

num_rows. Number of rows in the struct matrix

num_cols. Number of columns in the struct matrix

num_fields. Number of fields in the struct matrix

fieldnames. Array of NULL-terminated strings representing the fieldnames.

Return value
None

Description
Use this constructor to create a matrix of type mxSTRUCT_CLASS, with the
specified fieldnames. All elements are initialized with empty cells.
6

mwArray(int num_dims, const int* dims, int num_fields, const char** fieldnames)
mwArray(int num_dims, const int* dims, int num_fields,
const char** fieldnames) 4

Construct an n-dimensional struct array of the specified dimensions and
fieldnames

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
int dims[3] = {2, 3, 4}
mwArray a(3, dims, 3, fields);

Arguments

num_dims. Size of the dims array

dims. Dimensions of the struct array

num_fields. Number of fields in the struct array

fieldnames. Array of NULL-terminated strings representing the fieldnames

Return value
None

Description
Use this constructor to create an n-dimensional array of type mxSTRUCT_CLASS,
with the specified fieldnames. All elements are initialized with empty cells.
D-37

D C++ Utility Library Reference

D-3
mwArray(const mwArray& arr) 4

mwArray copy constructor

Constructs a new array from an existing one.

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(a);

Arguments

arr. mwArray to copy

Return value
None

Description
Use this constructor to create a copy of an existing array. The new array
contains a deep copy of the input array.
8

mwArray(<type> re)
mwArray(<type> re) 4

Construct a real scalar array of the type of the input argument and initialize
the data with the input argument’s value.

C++ syntax
#include "mclcppclass.h"
double x = 5.0;
mwArray a(x); // Creates a 1X1 double array with value 5.0

Arguments

re. Scalar value to initialize array with

Return value
None

Description
Use this constructor to create a real scalar array. <type> can be any of the
following: mxDouble, mxSingle, mxInt8, mxUint8, mxInt16, mxUint16, mxInt32,
mxUint32, mxInt64, mxUint64, or mxLogical. The scalar array is created with
the type of the input argument.
D-39

D C++ Utility Library Reference

D-4
mwArray(<type> re, <type> im) 4

Construct a complex scalar array of the type of the input arguments and
initialize the real and imaginary parts of the data with the input argument’s
values.

C++ syntax
#include "mclcppclass.h"
double re = 5.0;
double im = 10.0;
mwArray a(re, im);// Creates a 1X1 complex array with value 5+10i

Arguments

re. Scalar value to initialize real part with

im. Scalar value to initialize imaginary part with

Return value
None

Description
Use this constructor to create a complex scalar array. The first input argument
initializes the real part and the second argument initializes the imaginary
part. <type> can be any of the following: mxDouble, mxSingle, mxInt8, mxUint8,
mxInt16, mxUint16, mxInt32, mxUint32, mxInt64, or mxUint64. The scalar array
is created with the type of the input arguments.
0

mwArray Clone() const
mwArray Clone() const 4

Return a new array representing a deep copy of this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

Arguments
None

Return value
New mwArray representing a deep copy of the original.

Description
Use this method to create a copy of an existing array. The new array contains
a deep copy of the input array.
D-41

D C++ Utility Library Reference

D-4
mwArray SharedCopy() const 4

Return a new array representing a shared copy of this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

Arguments
None

Return value
New mwArray representing a reference counted version of the original.

Description
Use this method to create a shared copy of an existing array. The new array
and the original array both point to the same data.
2

mwArray Serialize() const
mwArray Serialize() const 4

Serialize the underlying array into a byte array, and return this data in a new
array of type mxUINT8_CLASS

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray s = a.Serialize();

Arguments
None

Return value
New mwArray of type mxUINT8_CLASS containing the serialized data.

Description
Use this method to serialize an array into bytes. A 1-by-n numeric matrix of
type mxUINT8_CLASS is returned containing the serialized data. The data can be
deserialized back into the original representation by calling
maArray::Deserialize().
D-43

D C++ Utility Library Reference

D-4
mxClassID ClassID() const 4

Return the type of this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();// Should return mxDOUBLE_CLASS

Arguments
None

Return value
The mxClassID of the array.

Description
Use this method to determine the type of the array. Consult the External
Interfaces documentation for more information on mxClassID.
4

int ElementSize() const
int ElementSize() const 4

Return the size in bytes of an element of this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();// Should return sizeof(double)

Arguments
None

Return value
The size in bytes of an element of this type of array.

Description
Use this method to determine the size in bytes of an element of this array type.
D-45

D C++ Utility Library Reference

D-4
int NumberOfElements() const 4

Return the number of elements in this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();// Should return 4

Arguments
None

Return value
Number of elements in this array.

Description
Use this method to determine the total size of the array.
6

int NumberOfNonZeros() const
int NumberOfNonZeros() const 4

Return the number of nonzero elements for a sparse array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfNonZeros();// Should return 4

Arguments
None

Return value
Number of nonzero elements in this array.

Description
Use this method to determine the size of the of the array’s data. If the
underlying array is not sparse, this returns the same value as
NumberOfElements().

Note This method does not analyze the actual values of the array elements.
D-47

D C++ Utility Library Reference

D-4
int MaximumNonZeros() const 4

Return the maximum number of nonzero elements for a sparse array

If the underlying array is not sparse, returns the same value as
NumberOfElements().

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();// Should return 4

Arguments
None

Return value
Number of allocated nonzero elements in this array.

Description
Use this method to determine the allocated size of the of the array’s data. If the
underlying array is not sparse, this returns the same value as
NumberOfElements().

Note This method does not analyze the actual values of the array elements.
8

int NumberOfDimensions() const
int NumberOfDimensions() const 4

Return the number of dimensions in this array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();// Should return 4

Arguments
None

Return value
Number of dimensions in this array.

Description
Use this method to determine the dimensionality of the array.
D-49

D C++ Utility Library Reference

D-5
int NumberOfFields() const 4

Return the number of fields in a struct array

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields(); // Should return 3

Arguments
None

Return value
Number of fields in the array.

Description
Use this method to determine the number of fields in a struct array. If the
underlying array is not of type struct, zero is returned.
0

mwString GetFieldName(int index)
mwString GetFieldName(int index) 4

Return a string representing the name of the (zero-based) ith field in a struct
array

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
const char* name = (const char*)a.GetFieldName(1); // Should

// return "b"

Arguments

Index. zero-based field number.

Return value
mwString containing the fieldname.

Description
Use this method to determine the name of a given field in a struct array. If the
underlying array is not of type struct, an exception is thrown.
D-51

D C++ Utility Library Reference

D-5
mwArray GetDimensions() const 4

Return an array of type mxINT32_CLASS representing the dimensions of this
array

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

Arguments
None

Return value
mwArray type mxINT32_CLASS containing the dimensions of the array.

Description
Use this method to determine the size of each dimension in the array. The size
of the returned array is 1-by-NumberOfDimensions().
2

bool IsEmpty() const
bool IsEmpty() const 4

Return true if the underlying array is empty

C++ syntax
#include "mclcppclass.h"
mwArray a;
bool b = a.IsEmpty(); // Should return true

Arguments
None

Return value
Boolean indicating if the array is empty.

Description
Use this method to determine if an array is empty.
D-53

D C++ Utility Library Reference

D-5
bool IsSparse() const 4

Return true if the underlying array is sparse

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsSparse(); // Should return false

Arguments
None

Return value

Boolean indicating if the array is sparse.

Description
Use this method to determine if an array is sparse.
4

bool IsNumeric() const
bool IsNumeric() const 4

Return true if the underlying array is numeric

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsNumeric(); // Should return true.

Arguments
None

Return value
Boolean indicating if the array is numeric.

Description
Use this method to determine if an array is numeric.
D-55

D C++ Utility Library Reference

D-5
bool IsComplex() const 4

Return true if the underlying array is complex

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.IsComplex(); // Should return true.

Arguments
None

Return value
Boolean indicating if the array is complex.

Description
Use this method to determine if an array is complex.
6

bool Equals(const mwArray& arr) const
bool Equals(const mwArray& arr) const 4

Test two arrays for equality

C++ syntax
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
bool b = a.Equals(b); // Should return true.

Arguments

arr. Array to compare to this array.

Return value

Boolean value indicating the equality of the two arrays.

Description
Returns true if the input array is byte-wise equal to this array. This method
makes a byte-wise comparison of the underlying arrays. Therefore, arrays of
the same type should be compared. Arrays of different types will not in general
be equal, even if they are initialized with the same data.
D-57

D C++ Utility Library Reference

D-5
int CompareTo(const mwArray& arr) const 4

Compare two arrays for order

C++ syntax
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
int n = a.CompareTo(b); // Should return 0

Arguments

arr. Array to compare to this array.

Return value
Returns a negative integer, zero, or a positive integer if this array is less than,
equal to, or greater than the specified array.

Description
Compares this array with the specified array for order. This method makes a
byte-wise comparison of the underlying arrays. Therefore, arrays of the same
type should be compared. Arrays of different types will, in general, not be
ordered equivalently, even if they are initialized with the same data.
8

int HashCode() const
int HashCode() const 4

Return a hash code for this array

C++ syntax
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

Arguments
None

Return value
An integer value representing a unique hash code for the array.

Description
This method constructs a unique hash value form the underlying bytes in the
array. Therefore, arrays of different types will have different hash codes, even
if they are initialized with the same data.
D-59

D C++ Utility Library Reference

D-6
mwString ToString() const 4

Return a string representation of the underlying array

C++ syntax
#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real() = 1.0;
a.Imag() = 2.0;
printf("%s\n", (const char*)(a.ToString())); // Should print

// "1 + 2i" on the
// screen.

Arguments
None

Return value
An mwString containing the string representation of the array.

Description
This method returns a string representation of the underlying array. The
string returned is the same string that is returned by typing a variable’s name
at the MATLAB command prompt.
0

mwArray RowIndex() const
mwArray RowIndex() const 4

Return an array containing the row indices of each element in this array

C++ syntax
#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.RowIndex();

Arguments
None

Return value
An mwArray containing the row indices.

Description
Returns an array of type mxINT32_CLASS representing the row indices (first
dimension) of this array. For sparse arrays, the indices are returned for just the
non-zero elements and the size of the array returned is
1-by-NumberOfNonZeros(). For nonsparse arrays, the size of the array
returned is 1-by-NumberOfElements(), and the row indices of all of the
elements are returned.
D-61

D C++ Utility Library Reference

D-6
mwArray ColumnIndex() const 4

Return an array containing the column indices of each element in this array

C++ syntax
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.ColumnIndex();

Arguments
None

Return value
An mwArray containing the column indices.

Description
Returns an array of type mxINT32_CLASS representing the column indices
(second dimension) of this array. For sparse arrays, the indices are returned for
just the non-zero elements and the size of the array returned is
1-by-NumberOfNonZeros(). For nonsparse arrays, the size of the array
returned is 1-by-NumberOfElements(), and the column indices of all of the
elements are returned.
2

void MakeComplex()
void MakeComplex() 4

Convert a real numeric array to complex

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.MakeComplex();
a.Imag().SetData(idata, 4);

Arguments
None

Return value
None

Description
Use this method to convert a numeric array that has been previously allocated
as real to complex. If the underlying array is of a nonnumeric type, an
mwException is thrown.
D-63

D C++ Utility Library Reference

D-6
mwArray Get(int num_indices, ...) 4

Return the single element at the specified 1-based index

The index is passed by first passing the number of indices followed by a comma
separated list of 1-based indices.

C++ syntax
#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1,1); // x = 1.0
x = a.Get(2, 1, 2); // x = 3.0
x = a.Get(2, 2, 2); // x = 4.0

Arguments

num_indices. Number of indices passed in.

… Comma-separated list of input indices. Number of items must equal
num_indices.

Return value
An mwArray containing the value at the specified index.

Description
Use this method to fetch a single element at a specified index. The index is
passed by first passing the number of indices followed by a comma-separated
list of 1-based indices. The valid number of indices that can be passed in is
either 1 (single subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case, the index
list is used to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For
multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
4

mwArray Get(const char* name, int num_indices, ...)
mwArray Get(const char* name, int num_indices, ...) 4

Return the single element at the specified field name and 1-based index in a
struct array

The index is passed by first passing the number of indices followed by a
comma-separated list of 1-based indices.

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};

mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, 1);
mwArray b = a.Get("b", 2, 1, 1);

Arguments

name. NULL-terminated string containing the field name to get.

num_indices. Number of indices passed in.

… Comma-separated list of input indices. Number of items must equal
num_indices.

Return value
An mwArray containing the value at the specified field name and index.

Description
Use this method to fetch a single element at a specified field name and index.
This method may only be called on an array that is of type mxSTRUCT_CLASS. An
mwException is thrown if the underlying array is not a struct array. The field
name passed must be a valid field name in the struct array. The index is
passed by first passing the number of indices followed by a comma-separated
list of 1-based indices. The valid number of indices that can be passed in is
either 1 (single subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case, the index
list is used to access the specified element. The valid range for indices is
D-65

D C++ Utility Library Reference

D-6
1 <= index <= NumberOfElements(), for single subscript indexing. For
multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
6

mwArray GetA(int num_indices, const int* index)
mwArray GetA(int num_indices, const int* index) 4

Return the single element at the specified 1-based index

The index is passed as an array of 1-based indices.

C++ syntax
#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
int index[2] = {1, 1};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.GetA(1, index); // x = 1.0
x = a.GetA(2, index); // x = 1.0
index[0] = 2;
index[1] = 2;
x = a.Get(2, index); // x = 4.0

Arguments

num_indices. Size of index array.

index. Array of at least size num_indices containing the indices.

Return value
An mwArray containing the value at the specified index.

Description
Use this method to fetch a single element at a specified index. The index is
passed by first passing the number of indices, followed by an array of 1-based
indices. The valid number of indices that can be passed in is either 1 (single
subscript indexing), in which case the element at the specified 1-based offset is
returned, accessing data in column-wise order, or NumberOfDimensions()
(multiple sub-script indexing), in which case, the index list is used to access the
specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For
multiple subscript indexing, the ith index has the valid range:
D-67

D C++ Utility Library Reference

D-6
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
8

mwArray GetA(const char* name, int num_indices, const int* index)
mwArray GetA(const char* name, int num_indices, const
int* index) 4

Return the single element at the specified field name and 1-based index in a
struct array

The index is passed as an array of 1-based indices.

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, index);
mwArray b = a.Get("b", 2, index);

Arguments

name. NULL-terminated string containing the field name to get.

num_indices. Number of indices passed in.

index. Array of at least size num_indices containing the indices.

Return value
An mwArray containing the value at the specified field name and index.

Description
Use this method to fetch a single element at a specified field name and index.
This method may only be called on an array that is of type mxSTRUCT_CLASS. An
mwException is thrown if the underlying array is not a struct array. The field
name passed must be a valid field name in the struct array. The index is
passed by first passing the number of indices followed by an array of 1-based
indices. The valid number of indices that can be passed in is either 1 (single
subscript indexing), in which case the element at the specified 1-based offset is
returned, accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used to access the
specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For
D-69

D C++ Utility Library Reference

D-7
multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
0

mwArray Real()
mwArray Real() 4

Return an mwArray that references the real part of a complex array

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments
None

Return value
An mwArray referencing the real part of the array.

Description
Use this method to access the real part of a complex array. The returned
mwArray is considered real and has the same dimensionality and type as the
original.
D-71

D C++ Utility Library Reference

D-7
mwArray Imag() 4

Return an mwArray that references the imaginary part of a complex array

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments
None

Return value
An mwArray referencing the imaginary part of the array.

Description
Use this method to access the imaginary part of a complex array. The returned
mwArray is considered real and has the same dimensionality and type as the
original.
2

void Set(const mwArray& arr)
void Set(const mwArray& arr) 4

Assign a shared copy of the input array to the currently referenced cell for
arrays of type mxCELL_CLASS and mxSTRUCT_CLASS

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a); // Sets c(1) = a
a.Get(1,2).Set(b); // Sets c(2) = b

Arguments

arr. mwArray to assign to currently referenced cell.

Return value
None

Description
Use this method to construct cell and struct arrays.
D-73

D C++ Utility Library Reference

D-7
void GetData(<numeric-type>* buffer, int len) const 4

Copy the array’s data into a supplied numeric buffer

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments

buffer. Buffer to receive copy.

len. Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
Valid types for <numeric-type> are mxDOUBLE_CLASS, mxSINGLE_CLASS,
mxINT8_CLASS, mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS,
mxINT32_CLASS, mxUINT32_CLASS, mxINT64_CLASS, and mxUINT64_CLASS. The
data is copied in column-major order. If the underlying array is not of the same
type as the input buffer, the data is converted to this type as it is copied. If a
conversion cannot be made, an mwException is thrown.
4

void GetLogicalData(mxLogical* buffer, int len) const
void GetLogicalData(mxLogical* buffer, int len) const 4

Copy the array’s data into a supplied mxLogical buffer

C++ syntax
#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetData(data, 4);
a.GetData(data_copy, 4);

Arguments

buffer. Buffer to receive copy.

len. Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
The data is copied in column-major order. If the underlying array is not of type
mxLOGICAL_CLASS, the data is converted to this type as it is copied. If a
conversion cannot be made, an mwException is thrown.
D-75

D C++ Utility Library Reference

D-7
void GetCharData(mxChar* buffer, int len) const 4

Copy the array’s data into a supplied mxChar buffer

C++ syntax
#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetData(data, 6);
a.GetData(data_copy, 6);

Arguments

buffer. Buffer to receive copy.

len. Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
The data is copied in column-major order. If the underlying array is not of type
mxCHAR_CLASS, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.
6

void SetData(<numeric-type>* buffer, int len)
void SetData(<numeric-type>* buffer, int len) 4

Copy the data from the supplied numeric buffer into the array

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments

buffer. Buffer containing data to copy.

len. Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
Valid types for <numeric-type> are mxDOUBLE_CLASS, mxSINGLE_CLASS,
mxINT8_CLASS, mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS,
mxINT32_CLASS, mxUINT32_CLASS, mxINT64_CLASS, and mxUINT64_CLASS. The
data is copied in column-major order. If the underlying array is not of the same
type as the input buffer, the data is converted to this type as it is copied. If a
conversion cannot be made, an mwException is thrown.
D-77

D C++ Utility Library Reference

D-7
void SetLogicalData(mxLogical* buffer, int len) 4

Copy the data from the supplied mxLogical buffer into the array

C++ syntax
#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetData(data, 4);
a.GetData(data_copy, 4);

Arguments

buffer. Buffer containing data to copy.

len.
Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
The data is copied in column-major order. If the underlying array is not of type
mxLOGICAL_CLASS, the data is converted to this type as it is copied. If a
conversion cannot be made, an mwException is thrown.
8

void SetCharData(mxChar* buffer, int len)
void SetCharData(mxChar* buffer, int len) 4

Copy the data from the supplied mxChar buffer into the array

C++ syntax
#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetData(data, 6);
a.GetData(data_copy, 6);

Arguments

buffer. Buffer containing data to copy.

len.
Maximum length of buffer. A maximum of len elements will be copied.

Return value
None

Description
The data is copied in column-major order. If the underlying array is not of type
mxCHAR_CLASS, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.
D-79

D C++ Utility Library Reference

D-8
mwArray operator()(int i1, int i2, int i3, …,) 4

Return the single element at the specified 1-based index

The index is passed as a comma-separated list of 1-based indices. This operator
is overloaded to support 1 through 32 indices.

C++ syntax
#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a(1,1); // x = 1.0
x = a(1,2); // x = 3.0
x = a(2,2); // x = 4.0

Arguments

i1, i2, i3, …, Comma-separated list of input indices.

Return value
An mwArray containing the value at the specified index.

Description
Use this operator to fetch a single element at a specified index. The index is
passed as a comma-separated list of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing), in which
case the element at the specified 1-based offset is returned, accessing data in
column-wise order, or NumberOfDimensions() (multiple subscript indexing), in
which case, the index list is used to access the specified element. The valid
range for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
0

mwArray operator()(const char* name, int i1, int i2, int i3, …,)
mwArray operator()(const char* name, int i1, int i2, int i3,
…,) 4

Return the single element at the specified field name and 1-based index in a
struct array

The index is passed as a comma-separated list of 1-based indices. This operator
is overloaded to support 1 through 32 indices.

C++ syntax
#include "mclcppclass.h"
const char** fields = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a("a", 1, 1);
mwArray b = a("b", 1, 1);

Arguments

name. NULL-terminated string containing the field name to get.

i1, i2, i3, …, Comma-separated list of input indices.

Return value
An mwArray containing the value at the specified field name and index.

Description
Use this method to fetch a single element at a specified field name and index.
This method may only be called on an array that is of type mxSTRUCT_CLASS. An
mwException is thrown if the underlying array is not a struct array. The field
name passed must be a valid field name in the struct array. The index is
passed by first passing the number of indices, followed by an array of 1-based
indices. The valid number of indices that can be passed in is either 1 (single
subscript indexing), in which case the element at the specified 1-based offset is
returned, accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used to access the
specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For
multiple subscript indexing, the ith index has the valid range:
D-81

D C++ Utility Library Reference

D-8
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if
an invalid number of indices is passed in or if any index is out of bounds.
2

mwArray& operator=(const <type>& x)
mwArray& operator=(const <type>& x) 4

Assign a single scalar value to the array

This operator is overloaded for all numeric and logical types.

C++ syntax
#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
a(1,1) = 1.0; // assigns 1.0 to element (1,1)
a(1,2) = 2.0; // assigns 2.0 to element (1,2)
a(2,1) = 3.0; // assigns 3.0 to element (2,1)
a(2,2) = 4.0; // assigns 4.0 to element (2,2)

Arguments

x. Value to assign.

Return value
A reference to the invoking mwArray.

Description
Use this operator to set a single scalar value.
D-83

D C++ Utility Library Reference

D-8
operator <type>() const 4

Fetch a single scalar value from the array

This operator is overloaded for all numeric and logical types.

C++ syntax
#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = (double)a(1,1); // x = 1.0
x = (double)a(1,2); // x = 3.0
x = (double)a(2,1); // x = 2.0
x = (double)a(2,2); // x = 4.0

Arguments
None

Return value
A single scalar value from the array.

Description
Use this operator to fetch a single scalar value.
4

static mwArray Deserialize(const mwArray& arr)
static mwArray Deserialize(const mwArray& arr) 4

Deserialize an array that has been serialized with mwArray::Serialize

C++ syntax
#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
mwArray b = a.Serialize();
a = mwArray::Deserialize(b); // a should contain same data as

// original

Arguments

arr. mwArray that has been obtained by calling mwArray::Serialize

Return value
A new mwArray containing the deserialized array.

Description
Use this method to deserialize an array that has been serialized with
mwArray::Serialize(). The input array must be of type mxUINT8_CLASS and
contain the data from a serialized array. If the input data does not represent a
serialized mwArray, the behavior of this method is undefined.
D-85

D C++ Utility Library Reference

D-8
static double GetNaN() 4

Get the value of NaN (Not-a-Number)

C++ syntax
#include "mclcppclass.h"
double x = mwArray::GetNaN();

Arguments
None

Return value
The value of NaN (Not-a-Number) on your system.

Description
Call mwArray::GetNaN to return the value of NaN for your system. NaN is the
IEEE arithmetic representation for Not-a-Number. Certain mathematical
operations return NaN as a result, for example,

• 0.0/0.0
• Inf-Inf

The value of NaN is built in to the system; you cannot modify it.
6

static double GetEps()
static double GetEps() 4

Get the value of eps

C++ syntax
#include "mclcppclass.h"
double x = mwArray::GetEps();

Arguments
None

Return value
The value of the MATLAB eps variable.

Description
Call mwArray::GetEps to return the value of the MATLAB eps variable. This
variable is the distance from 1.0 to the next largest floating-point number.
Consequently, it is a measure of floating-point accuracy. The MATLAB pinv
and rank functions use eps as a default tolerance.
D-87

D C++ Utility Library Reference

D-8
static double GetInf() 4

Get the value of Inf (infinity)

C++ syntax
#include "mclcppclass.h"
double x = mwArray::GetInf();

Arguments
None

Return value
The value of Inf (infinity) on your system.

Description
Call mwArray::GetInf to return the value of the MATLAB internal Inf
variable. Inf is a permanent variable representing IEEE arithmetic positive
infinity. The value of Inf is built into the system; you cannot modify it.

Operations that return Inf include:

• Division by 0. For example, 5/0 returns Inf.

• Operations resulting in overflow. For example, exp(10000) returns Inf
because the result is too large to be represented on your machine.
8

static bool IsFinite(double x)
static bool IsFinite(double x) 4

Test if a value is finite. Returns true if the value is finite.

C++ syntax
#include "mclcppclass.h"
bool x = mwArray::IsFinite(1.0); // Returns true

Arguments
Value to test for finiteness

Return value
Result of test.

Description
Call mwArray::IsFinite to determine whether or not a value is finite. A
number is finite if it is greater than -Inf and less than Inf.
D-89

D C++ Utility Library Reference

D-9
static bool IsInf(double x) 4

Test if a value is infinite. Returns true if the value is infinite.

C++ syntax
#include "mclcppclass.h"
bool x = mwArray::IsInf(1.0); // Returns false

Arguments
Value to test for infinity

Return value
Result of test.

Description
Call mwArray::IsInf to determine whether or not a value is equal to infinity
or minus infinity. MATLAB stores the value of infinity in a permanent variable
named Inf, which represents IEEE arithmetic positive infinity. The value of
the variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

•Οperations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine. If the value
equals NaN (Not-a-Number), then mxIsInf returns false. In other words, NaN
is not equal to infinity.
0

static bool IsNaN(double x)
static bool IsNaN(double x) 4

Test if a value is NaN (Not-a-Number). Returns true if the value is NaN.

C++ syntax
#include "mclcppclass.h"
bool x = mwArray::IsNaN(1.0); // Returns false

Arguments
Value to test for NaN

Return value
Result of test.

Description
Call mwArray::IsNaN to determine whether or not the value is NaN. NaN is the
IEEE arithmetic representation for Not-a-Number. NaN is obtained as a result
of mathematically undefined operations such as

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) use to represent an error condition or
missing data.
D-91

D C++ Utility Library Reference

D-9
2

Index
Symbols
%#external 8-3

using 4-13
%#function 8-4

using 4-16

A
-a option flag 1-10
addpath 3-10
Advanced Encryption Standard (AES)

cryptosystem 3-2
ANSI compiler

installing 2-4
application

POSIX main 4-10
application coding with

M-files and C/C++ files 5-11
M-files only 5-9

axes objects 1-23

B
bcc53compp.bat 2-9
bcc54compp.bat 2-9
bcc55compp.bat 2-9
bcc56compp.bat 2-9
Borland compiler 2-2
build process 3-2
builder products

overview 1-14
buildmcr 5-5
bundle file 4-7
C
C

interfacing to M-code 4-13
shared library wrapper 4-11

C++
interfacing to M-code 4-13
library wrapper 4-12
primitive types D-2
utility classes D-3

C++ utility library reference D-1
C/C++

compilers
supported on UNIX 2-3
supported on Windows 2-2

C/C++ compilation 3-5
callback problems, fixing 1-22
callback strings

searching M-files for 1-23
code

porting 3-8
COM component

wrapper 4-12
COM component wrapper 7-3
COM object

building 7-3
files created 7-4
interface 7-3
support 7-3
supported compilers 7-3

compilation path 3-9
Compiler

deprecated options 1-7
differences between versions 1-5
license 1-25
Index-1

Index

Ind
new options 1-9
security 3-2

compiler
MIDL 7-3
resource 7-3

compilers
supported on UNIX 2-3
supported on Windows 2-2

compiling
complete syntactic details 8-13

compiling a shared library
quick start 1-16

compiling a stand-alone
quick start 1-16

Component Technology File 3-2
compopts.bat 2-12
configuring

C/C++ compiler 2-7
using mbuild 2-7

conflicting options
resolving 4-3

CTF archive 3-2
determining files to include 3-9
extracting without executing 3-9

D
debugging

-G option flag 8-14
dependency analysis 3-5
depfun 3-9
deployed applications

licensing 1-25
deploying components

quick start 1-18
deploying to different platforms 3-8
deployment 3-8
ex-2
directory
user profile 2-12

DLL. See shared library.

E
encryption and compression 3-5
error messages

Compiler B-1
compile-time B-2
depfun B-8
internal error B-1
run-time B-7
warnings B-5

Excel plug-in
building 7-8

executables. See wrapper file.
export list 4-11
exported function signature 1-6
%#external 4-13, 8-3
extractCTF utility 3-9
extracting CTF archive without executing 3-9

F
feval 8-4

using 4-16
feval pragma 8-4
figure objects 1-23
file

bundle 4-7
license.dat 2-4
wrapper 1-13

full pathnames
handling 4-6

%#function 8-4
function

Index
calling from M-code 4-13
comparison to scripts 4-17
unsupported in stand-alone mode 1-21
wrapper 4-10

function M-file 4-17
functions

unsupported 1-21

G
-G option flag 8-14
gcc compiler 2-3

H
Handle Graphics 1-23

I
input/output files 3-6

C shared library 3-7
stand-alone executable 3-6

interfacing M-code to C/C++ code 4-13
internal error B-1

L
-l option flag 1-10
lcccompp.bat 2-9
libraries

overview 1-14
library

shared C/C++ 6-2
wrapper 4-12, 6-14

license problem 1-25, 2-4, C-4
license.dat file 2-4
licensing 1-25

limitations
Windows compilers 2-11

limitations of MATLAB Compiler 1-20
script M-file 1-20

linking stage of compilation 3-5
Linux

options file 2-10

M
-M option flag 8-15
-m option flag 5-9
macros 4-4
main program 4-10
main wrapper 4-10
main.m 5-9
MATLAB Builder for COM

overview 1-14
MATLAB Builder for Excel

overview 1-15
MATLAB Compiler

code produced 1-13
component types 1-13
error messages B-1
flags 4-2
generated wrapper functions 4-10
installing on

UNIX 2-4
installing on Microsoft Windows 2-4
limitations 1-20
macro 4-4
options 4-2
options summarized A-4
supported executable types 4-10
syntax 8-13
system requirements

UNIX 2-2
Index-3

Index

Ind
troubleshooting C-4
warning messages B-1

MATLAB Compiler license 1-25
MATLAB Component Runtime (MCR) 3-2
MATLAB interpreter 1-2
mbuild 2-7

options 8-8
-regsvr option 7-5
troubleshooting C-2

mcc 8-13
Compiler 2.3 options A-4
overview 4-2
syntax 4-2

mccstartup 4-3
MCR (MATLAB Component Runtime) 3-2

installing on deployment machine 3-12
instance 6-9
options 6-9

MCRInstaller utility 3-12
M-file

encrypting 3-2
example

houdini.m 4-17
main.m 5-9
mrank.m 5-9

function 4-17
script 4-17
searching for callback strings 1-23

Microsoft Interface Definition Language (MIDL)
compiler 7-3

Microsoft Visual C++ 2-2
MIDL (Microsoft Interface Definition Language)

compiler 7-3
mlf function interface 1-6
mlx interface function 6-24
mrank.m 5-9
MSVC. See Microsoft Visual C++.
ex-4
msvc60compp.bat 2-9
msvc70compp.bat 2-9
msvc71compp.bat 2-9

N
-N option flag 1-10

O
objects (Handle Graphics) 1-23
options 4-2

combining 4-2
Compiler 2.3 A-4
grouping 4-2
macros 4-4
new for Compiler 4 1-9
resolving conflicting 4-3
setting default 4-3
specifying 4-2

options file
changing 2-13
Linux 2-10
locating 2-12
modifying on

Linux 2-13
Windows 2-13

Windows 2-9
options files 2-12

P
-p option flag 1-11
pass through

-M option flag 8-15
path

user interaction 3-9

Index
-I option 3-10
-N and -p 3-10

pathnames
handling full 4-6

personal license password (PLP) 2-4
PLP (personal license password) 2-4
porting code 3-8
POSIX main application 4-10
POSIX main wrapper 4-10
pragma

%#external 8-3
%#function 8-4
feval 8-4

pragmas 4-16
primitive types D-2
problem with license 2-4

Q
quick start 1-16

compiling a shared library 1-16
compiling a stand-alone 1-16
deploying components 1-18
testing components 1-17

R
-R option flag 1-11
resolving conflicting options 4-3
resource compiler 7-3
rmpath 3-10

S
script file 4-17

including in deployed applications 4-18
script M-file 4-17

converting to function M-files 4-17
security 3-2
setting default options 4-3
shared library 6-3

calling structure 6-20
header file 4-11
wrapper 4-11

stand-alone applications 5-1
overview 1-14
restrictions on 1-21
restrictions on Compiler 2.3 1-21

supported executables 4-10
system requirements 2-2

T
testing components

quick start 1-17
troubleshooting

Compiler problems C-4
mbuild problems C-2
missing functions 1-22

U
uicontrol objects 1-23
uimenu objects 1-23
UNIX

system requirements 2-2
UNIX options file, locating 2-12
unsupported functions 1-21
updating deployed applications 1-20
upgrading from previous releases 1-4
user profile directory 2-12
Index-5

Index

Ind
V
varargin 6-25
varargout 6-25

W
warning message

Compiler B-1
Windows

options file 2-9
Windows compiler

limitations 2-11
Windows options file, locating 2-12
wrapper

C shared library 4-11, 6-3
C++ library 4-12, 6-14
COM component 4-12, 7-3, 7-4
main 4-10

wrapper code generation 3-5
wrapper file 1-13
wrapper function 4-10
wrappers

deprecated options 1-9
differences between versions 1-6

Z
-z option flag 8-20
ex-6

	Getting Started
	Introduction
	Before You Begin

	Upgrading from Previous Compiler Releases
	Differences Between MATLAB Compiler 4 and Previous Versions of the MATLAB Compiler
	Wrapper Code Differences
	Deprecated Compiler Options
	Deprecated Wrapper Options
	New Compiler Options

	Uses of the MATLAB Compiler
	Wrapper Files
	Stand-Alone Applications
	Libraries
	Builder Products

	Quick Start
	Compiling a Stand-Alone Application
	Compiling a Shared Library
	Testing Components on Development Machine
	Deploying Components to Other Machines

	Limitations and Restrictions
	Compiling MATLAB and Toolboxes
	MATLAB Code
	Stand-Alone Applications
	Fixing Callback Problems: Missing Functions
	Finding Missing Functions in an M-File
	Suppressing Warnings on Linux

	MATLAB Compiler Licensing
	Deployed Applications
	Using MATLAB Compiler Licenses for Development

	Installation and Configuration
	System Requirements
	Supported Third-Party Compilers

	Installation
	Installing the MATLAB Compiler
	Installing an ANSI C or C++ Compiler

	Configuration
	Introducing the mbuild Utility
	Configuring an ANSI C or C++ Compiler

	Special Compiler Notes
	Known Windows Compiler Limitations

	Options Files
	Locating the Options File
	Changing the Options File

	Compilation Process
	Overview of the MATLAB Compiler Technology
	MATLAB Component Runtime
	Component Technology File
	Build Process

	Input and Output Files
	Stand-Alone Executable
	C Shared Library

	Deployment Process
	Porting Generated Code to a Different Platform
	Extracting a CTF Archive without Executing the Component
	User Interaction with the Compilation Path

	Working with the MCR
	Installing the MCR on a Deployment Machine

	Working with mcc
	Command Overview
	Compiler Options
	Setting Up Default Options

	Using Macros to Simplify Compilation
	Understanding a Macro Option

	Using Pathnames
	Using Bundle Files
	Using Wrapper Files
	Main File Wrapper
	C Library Wrapper
	C++ Library Wrapper
	COM Component Wrapper

	Interfacing M-Code to C/C++ Code
	C Example

	Using Pragmas
	Using feval

	Script Files
	Converting Script M-Files to Function M-Files
	Including Script Files in Deployed Applications

	Stand-Alone Applications
	Introduction
	C Stand-Alone Application Target
	Magic Square Example

	Coding with M-Files Only
	Example

	Mixing M-Files and C or C++
	Simple Example
	Advanced C Example

	Libraries
	Introduction
	C Shared Library Target
	C Shared Library Wrapper
	C Shared Library Example
	Calling a Shared Library

	C++ Shared Library Target
	C++ Shared Library Wrapper
	C++ Shared Library Example

	MATLAB Compiler-Generated Interface Functions
	Structure of Programs that Call Shared Libraries
	Library Initialization and Termination Functions
	Print and Error Handling Functions
	Functions Generated from M-Files

	COM and Excel Components
	Introduction
	Generating COM and Excel Components

	COM Object Target
	COM Component Wrapper

	Excel Plug-In Target
	Excel Plug-in Wrapper

	Reference
	Functions — Categorical List
	Pragmas
	Command Line Tools

	MATLAB Compiler Quick Reference
	Common Uses of the Compiler
	Create a Stand-Alone Application
	Create a Library

	mcc

	Error and Warning Messages
	Compile-Time Errors
	Warning Messages
	Run-Time Errors
	Depfun Errors
	MCR/Dispatcher Errors
	XML Parser Errors
	Depfun-Produced Errors

	Troubleshooting
	mbuild
	MATLAB Compiler

	C++ Utility Library Reference
	Primitive Types
	Utility Classes
	mwString Class
	Constructors
	Methods
	Operators

	mwException Class
	Constructors
	Methods
	Operators

	mwArray Class
	Constructors
	Methods
	Operators
	Static Methods

	Index

